Cho hàm số \[y = f\left( x \right)\] có bảng biến thiên như sau:
Giá trị cực tiểu của hàm số bằng
Quảng cáo
Trả lời:
Chọn đáp án A
Dựa vào BBT ta có đạo hàm đổi dấu từ âm sang dương khi đi qua \(x = - \frac{{\sqrt 2 }}{2}\) và \(x = \frac{{\sqrt 2 }}{2}\).
Nên hàm số đạt cực tiểu tại \(x = - \frac{{\sqrt 2 }}{2}\) và \(x = \frac{{\sqrt 2 }}{2}\).
Khi đó giá trị cực tiểu của hàm số bằng \[y\left( { \pm \frac{{\sqrt 2 }}{2}} \right) = - \frac{{25}}{4}\].
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn đáp án B
Ta có: \({u_2} = {u_1} + d \Rightarrow d = - 3\)
Khi đó \[{u_{10}} = {u_1} + 9d \Leftrightarrow {u_{10}} = 4 + 9.( - 3) \Leftrightarrow {u_{10}} = - 23\]
Lời giải
Chọn đáp án B
Ta có : \[{l^2} = {h^2} + {R^2} \Rightarrow {h^2} = {l^2} - {R^2} = {5^2} - {3^2} = 16\]\[ \Rightarrow h = 4\].
Áp dụng \[V = \frac{1}{3}.\pi .{R^2}.h = \frac{1}{3}.\pi {.3^2}.4 = 12\pi \].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.