Câu hỏi:
14/04/2022 414Tiệm cận đứng của đồ thị hàm số \[y = \frac{{2x - 2}}{{{x^2} - 1}}\] là
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Chọn đáp án C
Tập xác định \[D = \mathbb{R}\backslash \left\{ { - 1;\,1} \right\}\].
\[\left\{ \begin{array}{l}\mathop {\lim }\limits_{x \to {1^ + }} y = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{2x - 2}}{{{x^2} - 1}} = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{2\left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} = \mathop {\lim }\limits_{x \to {1^ + }} \frac{2}{{x + 1}} = 1\\\mathop {\lim }\limits_{x \to {1^ - }} y = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{2x - 2}}{{{x^2} - 1}} = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{2\left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} = \mathop {\lim }\limits_{x \to {1^ - }} \frac{2}{{x + 1}} = 1\end{array} \right.\].
Nên \[x = 1\] không là đường tiệm cận đứng của đồ thị hàm số.
\[\left\{ \begin{array}{l}\mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} y = \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} \frac{{2x - 2}}{{{x^2} - 1}} = \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} \frac{{2\left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} = \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} \frac{2}{{x + 1}} = + \infty \\\mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ - }} y = \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ - }} \frac{{2x - 2}}{{{x^2} - 1}} = \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ - }} \frac{{2\left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} = \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ - }} \frac{2}{{x + 1}} = - \infty \end{array} \right.\].
Nên \[x = - 1\] là đường tiệm cận đứng của đồ thị hàm số.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho cấp số cộng \(({u_n})\)có \({u_1} = 4;\,{u_2} = 1\). Giá trị của \({u_{10}}\)bằng:
Câu 2:
Cho khối nón có bán kính \[R = 3\], đường sinh \[l = 5\]. Thể tích khối nón đã cho bằng
Câu 3:
Câu 4:
Cho khối chóp có thể tích \[V = 10\] và chiều cao \[h = 6\]. Diện tích đáy của khối chóp đã cho bằng
Câu 5:
Diện tích S của hình phẳng giới hạn bởi các đường \(y = 2{x^2} + 3x + 1\,,\,y = {x^3} + 1\,\) được tính bởi công thức nào dưới đây ?
Câu 6:
Số giao điểm của đồ thị hàm số \(y = {x^4} + 3{x^2} - 4\) với trục hoành là
Câu 7:
Cho hàm số \(f\left( x \right) = \frac{{mx + 1}}{{x + 1}}\) ( \(m\)là tham số thực). Gọi \(S\) là tập hợp các giá trị của \(m\)sao cho \(\mathop {max}\limits_{\left[ {1;2} \right]} \left| {f\left( x \right)} \right| + \mathop {min}\limits_{\left[ {1;2} \right]} \left| {f\left( x \right)} \right| = 3\). Số phần tử của \(S\) là
về câu hỏi!