Câu hỏi:

14/04/2022 204 Lưu

Cho hai số phức \({z_1} = 1 + 2i\), \({z_2} = 3 - i\). Tìm số phức \(z = \frac{{{z_2}}}{{{z_1}}}\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

\[z = \frac{{{z_2}}}{{{z_1}}} = \frac{{3 - i}}{{1 + 2i}} = \frac{{\left( {1 - 2i} \right)\left( {3 - i} \right)}}{{\left( {1 - 2i} \right)\left( {1 + 2i} \right)}} = \frac{{1 - 7i}}{5} = \frac{1}{5} - \frac{7}{5}i\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Chọn đáp án B

Ta có: \({u_2} = {u_1} + d \Rightarrow d = - 3\)

Khi đó \[{u_{10}} = {u_1} + 9d \Leftrightarrow {u_{10}} = 4 + 9.( - 3) \Leftrightarrow {u_{10}} = - 23\]

Lời giải

Chọn đáp án B

Ta có : \[{l^2} = {h^2} + {R^2} \Rightarrow {h^2} = {l^2} - {R^2} = {5^2} - {3^2} = 16\]\[ \Rightarrow h = 4\].

Áp dụng \[V = \frac{1}{3}.\pi .{R^2}.h = \frac{1}{3}.\pi {.3^2}.4 = 12\pi \].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP