Câu hỏi:

14/04/2022 2,325 Lưu

Trong không gian \[Oxyz\], cho mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - 2x + 4y + 1 = 0\). Tâm của \(\left( S \right)\) có tọa độ là

A. \(\left( {1; - 2;0} \right)\).

B. \(\left( { - 1;2;0} \right)\).

C. \(\left( { - 1;2;1} \right)\) .

D. \(\left( {1; - 2;1} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn đáp án A

\(\left( S \right):{x^2} + {y^2} + {z^2} - 2x + 4y + 1 = 0 \Leftrightarrow {\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} + {z^2} = 4 \Rightarrow I\left( {1; - 2;0} \right),R = 2\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \({u_{10}} = - 31\).

B. \({u_{10}} = - 23\).

C. \({u_{10}} = - 20\).

D. \({u_{10}} = 15\).

Lời giải

Chọn đáp án B

Ta có: \({u_2} = {u_1} + d \Rightarrow d = - 3\)

Khi đó \[{u_{10}} = {u_1} + 9d \Leftrightarrow {u_{10}} = 4 + 9.( - 3) \Leftrightarrow {u_{10}} = - 23\]

Lời giải

Chọn đáp án B

Ta có : \[{l^2} = {h^2} + {R^2} \Rightarrow {h^2} = {l^2} - {R^2} = {5^2} - {3^2} = 16\]\[ \Rightarrow h = 4\].

Áp dụng \[V = \frac{1}{3}.\pi .{R^2}.h = \frac{1}{3}.\pi {.3^2}.4 = 12\pi \].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[S = \pi \int\limits_{ - 1}^3 {{{\left( {{x^3} - 2{x^2} - 3x} \right)}^2}dx} \].

B. \(S = \int\limits_{ - 1}^3 {\left( {{x^3} - 2{x^2} - 3x} \right)dx} \).

C.\(S = \int\limits_{ - 1}^0 {\left( {{x^3} - 2{x^2} - 3x} \right)dx} + \int\limits_0^3 {\left( {2{x^2} + 3x - {x^3}} \right)dx} \).

D. \(S = \int\limits_{ - 1}^0 {\left( {2{x^2} + 3x - {x^3}} \right)dx} + \int\limits_0^3 {\left( {{x^3} - 2{x^2} - 3x} \right)dx} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP