Cho đường thẳng
\((d):\frac{{x + 1}}{2} = \frac{{y - 2}}{{ - 1}} = \frac{{z - 2}}{1}\) và mặt phẳng \((P):2x + y - 3 = 0\). Đường thẳng \(\Delta \) là hình chiếu vuông góc của đường thẳng \(d\)xuống mặt phẳng \((P)\) có phương trình là
A.\[\frac{{x - 1}}{{ - 1}} = \frac{{y - 1}}{2} = \frac{{z - 3}}{4}\].
B. \[\frac{{x + 1}}{{ - 1}} = \frac{{y - 2}}{2} = \frac{{z - 2}}{4}\].
C. \(\frac{{x + 1}}{4} = \frac{{y - 2}}{{ - 8}} = \frac{{z - 2}}{5}\).
D.\(\frac{{x - 1}}{4} = \frac{{y - 1}}{{ - 8}} = \frac{{z - 3}}{5}\).
Quảng cáo
Trả lời:

Chọn đáp án D
Tọa độ giao điểm \(A\) của \(d\)và \((P)\) là nghiệm của hệ: \(\left\{ \begin{array}{l}2x + y - 3 = 0\\x + 2y - 3 = 0\\y + z - 4 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y = 1\\z = 3\end{array} \right. \Leftrightarrow A\left( {1;1;3} \right)\).
Lấy \(B\left( { - 1;2;2} \right) \in d\), gọi \(H\) là hình chiếu của \(B\) xuống mặt phẳng \((P)\).
Phương trình đường thẳng \(\left( {BH} \right):\left\{ \begin{array}{l}x = - 1 + 2t\\y = 2 - t\\z = 2\end{array} \right.\). Tọa độ điểm \(H\)là nghiệm của hệ: \(\left\{ \begin{array}{l}2x + y - 3 = 0\\x = - 1 + 2t\\y = 2 - t\\z = 2\end{array} \right. \Leftrightarrow H\left( {\frac{1}{5};\frac{{13}}{5};2} \right)\).
Hình chiếu \(\Delta \) là đường thẳng đi qua hai điểm \(A,H\).
Ta có \(\overrightarrow {AH} \left( {\frac{{ - 4}}{5};\frac{8}{5}; - 1} \right)\). Đường thẳng \(\Delta \) đi qua \(A\) có vecto chỉ phương \({\vec u_\Delta } = - 5\overrightarrow {AH} = \left( {4; - 8,5} \right)\).
Phương trình đường thẳng \(\Delta \) là: \(\frac{{x - 1}}{4} = \frac{{y - 1}}{{ - 8}} = \frac{{z - 3}}{5}\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \({u_{10}} = - 31\).
B. \({u_{10}} = - 23\).
C. \({u_{10}} = - 20\).
D. \({u_{10}} = 15\).
Lời giải
Chọn đáp án B
Ta có: \({u_2} = {u_1} + d \Rightarrow d = - 3\)
Khi đó \[{u_{10}} = {u_1} + 9d \Leftrightarrow {u_{10}} = 4 + 9.( - 3) \Leftrightarrow {u_{10}} = - 23\]
Câu 2
A. \[36\pi \].
B. \[12\pi \].
C. \[15\pi \].
D. \[45\pi \].
Lời giải
Chọn đáp án B
Ta có : \[{l^2} = {h^2} + {R^2} \Rightarrow {h^2} = {l^2} - {R^2} = {5^2} - {3^2} = 16\]\[ \Rightarrow h = 4\].
Áp dụng \[V = \frac{1}{3}.\pi .{R^2}.h = \frac{1}{3}.\pi {.3^2}.4 = 12\pi \].
Câu 3
A. \(\frac{{46}}{{125}}\).
B. \(\frac{{121}}{{625}}\).
C. \(\frac{{36}}{{125}}\).
D. \(\frac{{181}}{{625}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Cho khối chóp có thể tích \[V = 10\] và chiều cao \[h = 6\]. Diện tích đáy của khối chóp đã cho bằng
A. 5.
B. 10.
C. 15.
D. 30.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \[S = \pi \int\limits_{ - 1}^3 {{{\left( {{x^3} - 2{x^2} - 3x} \right)}^2}dx} \].
B. \(S = \int\limits_{ - 1}^3 {\left( {{x^3} - 2{x^2} - 3x} \right)dx} \).
C.\(S = \int\limits_{ - 1}^0 {\left( {{x^3} - 2{x^2} - 3x} \right)dx} + \int\limits_0^3 {\left( {2{x^2} + 3x - {x^3}} \right)dx} \).
D. \(S = \int\limits_{ - 1}^0 {\left( {2{x^2} + 3x - {x^3}} \right)dx} + \int\limits_0^3 {\left( {{x^3} - 2{x^2} - 3x} \right)dx} \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \(60^\circ \).
B. \(90^\circ \).
C. \(30^\circ \).
D. \(45^\circ \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \(3\).
B. \(2\).
C. \(1\).
D. \(4\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.