Câu hỏi:
15/04/2022 1,262Cho hình chóp \(S.ABCD\) có chiều cao bằng \(12\) và diện tích đáy bằng \(27\). Đáy \(ABCD\) là hình bình hành. Gọi \(M\), \(N\), \(E\), \(F\) lần lượt là trọng tâm các tam giác \(SAB\), \(SBC\), \(SCD\), \(SAD\). Tính thể tích khối đa diện lồi có các đỉnh là các điểm \(M\), \(N\), \(E\), \(F\), \(A\), \(B\), \(C\), \(D\).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Chọn đáp án D
Chiều cao khối chóp \(S.ABCD\) là \(h = 12\) và diện tích đáy là \(S = 27\). Gọi \(A'\), \(B'\), \(C'\), \(D'\) lần lượt là các điểm nằm trên các cạnh \(SA\), \(SB\), \(SC\), \(SD\) sao cho \(\frac{{SA'}}{{SA}} = \frac{{SB'}}{{SB}} = \frac{{SC'}}{{SC}} = \frac{{SD'}}{{SD}} = \frac{2}{3}\).
Diện tích hình bình hành \(A'B'C'D'\) là \(S' = \frac{2}{3}.\frac{2}{3}.S = \frac{4}{9}.S\).
Diện tích tam giác \(B'MN\) bằng \(\frac{1}{8}S' = \frac{1}{8}.\frac{4}{9}S = \frac{1}{{18}}S\).
Thể tích khối chóp \(B.B'MN\) là \({V_1} = \frac{1}{3}.\frac{1}{{18}}S.\frac{1}{3}h = \frac{1}{{162}}.Sh\).
Thể tích khối chóp cụt \(A'B'C'D'.ABCD\) là \(V' = \frac{1}{3}S.h - \frac{1}{3}.\frac{4}{9}S.\frac{2}{3}h = \frac{{19}}{{81}}Sh\).
Thể tích khối đa diện lồi cần tìm là \(V = V' - 4{V_1} = \frac{{19}}{{81}}Sh - 4.\frac{1}{{162}}Sh = \frac{{17}}{{81}}Sh = \frac{{17}}{{81}}.27.12 = 68\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho cấp số cộng \(({u_n})\)có \({u_1} = 4;\,{u_2} = 1\). Giá trị của \({u_{10}}\)bằng:
Câu 2:
Cho khối nón có bán kính \[R = 3\], đường sinh \[l = 5\]. Thể tích khối nón đã cho bằng
Câu 3:
Câu 4:
Cho khối chóp có thể tích \[V = 10\] và chiều cao \[h = 6\]. Diện tích đáy của khối chóp đã cho bằng
Câu 5:
Diện tích S của hình phẳng giới hạn bởi các đường \(y = 2{x^2} + 3x + 1\,,\,y = {x^3} + 1\,\) được tính bởi công thức nào dưới đây ?
Câu 6:
Số giao điểm của đồ thị hàm số \(y = {x^4} + 3{x^2} - 4\) với trục hoành là
Câu 7:
Cho hàm số \(f\left( x \right) = \frac{{mx + 1}}{{x + 1}}\) ( \(m\)là tham số thực). Gọi \(S\) là tập hợp các giá trị của \(m\)sao cho \(\mathop {max}\limits_{\left[ {1;2} \right]} \left| {f\left( x \right)} \right| + \mathop {min}\limits_{\left[ {1;2} \right]} \left| {f\left( x \right)} \right| = 3\). Số phần tử của \(S\) là
về câu hỏi!