Câu hỏi:

15/04/2022 7,726

Cho cấp số nhân \(\left( {{u_n}} \right)\) có số hạng đầu tiên \({u_1} = 2\) và công bội \(q = - 3\). Số số hạng thứ 4 của cấp số nhân bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Số hạng tổng quát của cấp số nhân là: \({u_n} = {u_1}.{q^{n - 1}}\)

Số số hạng thứ 4 của cấp số nhân là: \({u_4} = 2.{\left( { - 3} \right)^3} = - 54\).

Chọn đáp án C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Gọi \[{N_0}\] là lượng vi rút trong cơ thể ông A ngay khi nhập viện.

Sau \[n\] ngày \[\left( {n \in {\mathbb{N}^*}} \right)\], lượng vi rút trong cơ thể ông A là \[N = {N_0}{\left( {1 - 10\% } \right)^n}\].

Ông A được xuất viện khi

\[\frac{N}{{{N_0}}} \le 30\% \Rightarrow {\left( {1 - 10\% } \right)^n} \le 30\% \Rightarrow {\left( {\frac{9}{{10}}} \right)^n} \le \frac{3}{{10}} \Rightarrow n \ge {\log _{\frac{9}{{10}}}}\frac{3}{{10}} \approx 11,4 \Rightarrow n \ge 12\,\left( {n \in {\mathbb{N}^*}} \right)\].

Vậy sau ít nhất 12 ngày thì ông A được xuất viện.

Chọn đáp án C

 

Lời giải

Lời giải

Số cần tìm có dạng \(\overline {abcdef} .\)

Trường hợp 1:không có số 0.

Chọn 1 số lẻ cho \(f\) có 5 cách.

Chọn thêm 2 số lẻ có \(C_4^2\) cách.

Chọn 3 số chẵn có \(C_4^3\) cách.

Xếp 5 số vừa chọn vào 5 vị trí còn lại có 5! cách.

Vậy có \(5.C_4^2.C_4^3.5! = 14400\) số.

Trường hợp 2:có số 0.

Chọn 1 số lẻ cho \(f\) có 5 cách.

Xếp số 0 vào 1 trong bốn vị trí \(b,\) \(c,\) \(d,\) \(e\) có 4 cách.

Chọn thêm 2 số lẻ có \(C_4^2\) cách.

Chọn thêm 2 số chẵn có \(C_4^2\) cách.

Xếp 4 số vừa chọn vào 4 vị trí còn lại có 4! cách.

Vậy có \(5.4.C_4^2.C_4^2.4! = 17280\) số.

Kết luận: \(14400 + 17280 = 31680\) số.

Chọn đáp án A

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Cho \(a\) là một số thực dương khác 1, khi đó \({\log _a}\sqrt[3]{a}\)bằng:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay