Trong không gian Oxyz,cho hai vectơ \[\vec u = \left( {2; - 3;4} \right)\] và \[\vec v = \left( {m + 4; - 2{m^2} - 1;5m + 2} \right),\] với m là tham số thực. Tìm tất cả các giá trị thực của m để vectơ \[\vec u\] cùng phương với vectơ \[\vec v.\]
A.\[m = 2.\]
B.\[m = - \frac{5}{4}.\]
C.\[m = 3.\]
D.\[m = - 2.\]
Quảng cáo
Trả lời:

Chọn đáp án A
Ta có \(\overrightarrow u ,\overrightarrow v \) cùng phương \( \Leftrightarrow \frac{{m + 4}}{2} = \frac{{ - 2{m^2} - 1}}{{ - 3}} = \frac{{5m + 2}}{4}\)
\( \Leftrightarrow \left\{ \begin{array}{l}\frac{{m + 4}}{2} = \frac{{5m + 2}}{4}\\\frac{{m + 4}}{2} = \frac{{2{m^2} + 1}}{3}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}4m + 16 = 10m + 4\\3m + 12 = 4{m^2} + 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}6m = 12\\4{m^2} - 3m - 10 = 0\end{array} \right. \Leftrightarrow m = 2\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A.\[\mathop {\min }\limits_{\left[ {1;4} \right]} {\mkern 1mu} y = 17.\]
B.\[\mathop {\min }\limits_{\left[ {1;4} \right]} {\mkern 1mu} y = 12.\]
C.\[\mathop {\min }\limits_{\left[ {1;4} \right]} {\mkern 1mu} y = 20.\]
D.\[\mathop {\min }\limits_{\left[ {1;4} \right]} {\mkern 1mu} y = 10.\]
Lời giải
Chọn đáp án B
Hàm số đã cho đã xác định và liên tục trên \(\left[ {1;4} \right]\).
Ta có \(\left\{ \begin{array}{l}x \in \left( {1;4} \right)\\y' = 2x - \frac{{16}}{{{x^2}}} = 0\end{array} \right. \Leftrightarrow x = 2\).
Tính \(y\left( 1 \right) = 17;{\rm{ }}y\left( 4 \right) = 20;{\rm{ }}y\left( 2 \right) = 12 \Rightarrow \mathop {\min }\limits_{\left[ {1;4} \right]} y = 12\)
Lời giải
Chọn đáp án A
Đường thẳng \(y = \frac{{11}}{2}\) cắt đồ thị hàm số \(y = f\left( x \right)\) tại đúng 1 điểm.
Câu 3
A.\[x - y - 6 = 0.\]
B.\[x + 3y + 2z + 10 = 0.\]
C.\[x - 2y - 3z - 1 = 0.\]
D.\[3x + z + 2 = 0.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A.\[y' = \frac{2}{{2x + 3}}.\]
B.\[y' = \frac{1}{{2x + 3}}.\]
C.\[y' = \frac{2}{{\left( {2x + 3} \right)\ln 2}}.\]
D.\[y' = \frac{1}{{\left( {2x + 3} \right)\ln 2}}.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A.\[ + \infty .\]
B.0.
C.\[\frac{1}{{2019}}.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A.\[ - \frac{1}{6}.\]
B.\[\frac{1}{6}.\]
C.\[ - \frac{1}{4}.\]
D.\[\frac{1}{4}.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A.\[V = 12\pi .\]
B.\[V = 36\pi .\]
C.\[V = 15\pi .\]
D.\[V = 45\pi .\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.