Câu hỏi:

15/04/2022 381 Lưu

Biết rằng \[\int\limits_0^{\frac{\pi }{3}} {{{\sin }^2}x\cos xdx} = \frac{{a + b\sqrt 3 }}{{16}},\] với \[a,{\rm{ }}b \in \mathbb{Z}.\] Tính \[S = a + 2b.\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn đáp án A

Ta có: \(\int\limits_0^{\frac{\pi }{3}} {{{\sin }^2}x\cos xdx} = \int\limits_0^{\frac{\pi }{3}} {{{\sin }^2}xd\left( {\sin x} \right)} = \left. {\frac{{{{\sin }^3}x}}{3}} \right|_0^{\frac{\pi }{3}} = \frac{{2\sqrt 3 }}{{16}} \Rightarrow \left\{ \begin{array}{l}a = 0\\b = 2\end{array} \right. \Rightarrow S = 4\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Chọn đáp án B

Hàm số đã cho đã xác định và liên tục trên \(\left[ {1;4} \right]\).

Ta có \(\left\{ \begin{array}{l}x \in \left( {1;4} \right)\\y' = 2x - \frac{{16}}{{{x^2}}} = 0\end{array} \right. \Leftrightarrow x = 2\).

Tính \(y\left( 1 \right) = 17;{\rm{ }}y\left( 4 \right) = 20;{\rm{ }}y\left( 2 \right) = 12 \Rightarrow \mathop {\min }\limits_{\left[ {1;4} \right]} y = 12\)

Lời giải

Chọn đáp án A

Đường thẳng \(y = \frac{{11}}{2}\) cắt đồ thị hàm số \(y = f\left( x \right)\) tại đúng 1 điểm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP