Câu hỏi:

15/04/2022 565 Lưu

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Khoảng cách từ điểm A đến mặt phẳng \[\left( {SBD} \right)\] bằng \[\frac{{2a}}{3}.\] Tính thể tích của khối chóp \[S.ABC.\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn đáp án B

 Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Khoảng cách từ điểm A (ảnh 1)

Tứ diện vuông S.ABCD

\( \Rightarrow \frac{1}{{{{\left( {\frac{{2a}}{3}} \right)}^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{B^2}}} + \frac{1}{{A{D^2}}} \Rightarrow SA = 2a\)

\( \Rightarrow {V_{S.ABC}} = \frac{1}{3}SA.{S_{ABC}} = \frac{1}{3}SA.\frac{1}{2}.A{B^2} = \frac{{{a^3}}}{3}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Chọn đáp án B

Hàm số đã cho đã xác định và liên tục trên \(\left[ {1;4} \right]\).

Ta có \(\left\{ \begin{array}{l}x \in \left( {1;4} \right)\\y' = 2x - \frac{{16}}{{{x^2}}} = 0\end{array} \right. \Leftrightarrow x = 2\).

Tính \(y\left( 1 \right) = 17;{\rm{ }}y\left( 4 \right) = 20;{\rm{ }}y\left( 2 \right) = 12 \Rightarrow \mathop {\min }\limits_{\left[ {1;4} \right]} y = 12\)

Lời giải

Chọn đáp án A

Đường thẳng \(y = \frac{{11}}{2}\) cắt đồ thị hàm số \(y = f\left( x \right)\) tại đúng 1 điểm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP