Câu hỏi:

19/04/2022 249 Lưu

Cho hàm số f(x) liên tục trên đoạn \[\left[ {1;e} \right]\] thỏa mãn \[\int\limits_1^e {\frac{{f\left( x \right)}}{x}dx} = 1\] và \[f\left( e \right) = 1.\] Tính tích phân \[I = \int\limits_1^e {f'\left( x \right).\ln xdx} .\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn đáp án D

Ta có \(I = \int\limits_1^e {f'\left( x \right).\ln xdx} = \int\limits_1^e {\ln xd\left[ {f\left( x \right)} \right]} = \left. {f\left( x \right).\ln x} \right|_1^e - \int\limits_1^e {f\left( x \right)d\left( {\ln x} \right)} \)

\( = f\left( e \right) - \int\limits_1^e {f\left( x \right).\frac{1}{x}dx} = 1 - 1 = 0\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Chọn đáp án B

Hàm số đã cho đã xác định và liên tục trên \(\left[ {1;4} \right]\).

Ta có \(\left\{ \begin{array}{l}x \in \left( {1;4} \right)\\y' = 2x - \frac{{16}}{{{x^2}}} = 0\end{array} \right. \Leftrightarrow x = 2\).

Tính \(y\left( 1 \right) = 17;{\rm{ }}y\left( 4 \right) = 20;{\rm{ }}y\left( 2 \right) = 12 \Rightarrow \mathop {\min }\limits_{\left[ {1;4} \right]} y = 12\)

Lời giải

Chọn đáp án A

Đường thẳng \(y = \frac{{11}}{2}\) cắt đồ thị hàm số \(y = f\left( x \right)\) tại đúng 1 điểm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP