Câu hỏi:

15/04/2022 200 Lưu

Cho hình chóp S.ABCcó đáy ABClà tam giác vuông cân tại A và \[BC = 2a.\] Cạnh \[SA = \frac{a}{{\sqrt 3 }}\] và vuông góc với mặt phẳng đáy. Góc giữa hai mặt phẳng \[\left( {SBC} \right)\] và \[\left( {ABC} \right)\] bằng

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn đáp án C

 Cho hình chóp S.ABCcó đáy ABClà tam giác vuông cân tại A và BC = 2a (ảnh 1)

Kẻ \(AP \bot BC\).

Mà \(BC \bot SA \Rightarrow BC \bot \left( {SAP} \right) \Rightarrow BC \bot SP\)

\( \Rightarrow \left( {\widehat {\left( {SBC} \right);\left( {ABC} \right)}} \right) = \widehat {SPA}\)

\(\tan \widehat {SPA} = \frac{{SA}}{{AP}} = \frac{{SA}}{{\frac{{BC}}{2}}} = \frac{1}{{\sqrt 3 }} \Rightarrow \widehat {SPA} = 30^\circ \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Chọn đáp án B

Hàm số đã cho đã xác định và liên tục trên \(\left[ {1;4} \right]\).

Ta có \(\left\{ \begin{array}{l}x \in \left( {1;4} \right)\\y' = 2x - \frac{{16}}{{{x^2}}} = 0\end{array} \right. \Leftrightarrow x = 2\).

Tính \(y\left( 1 \right) = 17;{\rm{ }}y\left( 4 \right) = 20;{\rm{ }}y\left( 2 \right) = 12 \Rightarrow \mathop {\min }\limits_{\left[ {1;4} \right]} y = 12\)

Lời giải

Chọn đáp án A

Đường thẳng \(y = \frac{{11}}{2}\) cắt đồ thị hàm số \(y = f\left( x \right)\) tại đúng 1 điểm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP