Câu hỏi:

18/04/2022 8,186

Một con lắc đơn dao động điều hòa với phương trình li độ dài: s = 2cos7t(cm) (t: giây), tại nơi có gia tốc trọng trường g = 9,8(m/s2). Tỷ số giữa lực căng dây và trọng lực tác dụng lên quả cầu ở vị trí cân bằng là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Trả lời:

Từ phương trình li độ dài của con lắc đơn: s = 2cos7t

Ta có: Tần số góc của dao động: ω = 7(rad/s)

Mặt khác:

\[\omega = \sqrt {\frac{g}{l}} = 7\]

\[ \to l = \frac{9}{{{\omega ^2}}} = \frac{{9,8}}{{{7^2}}} = 0,2m\]

\[{s_0} = 2cm = 0,02m = l{\alpha _0}\]

\[ \to {\alpha _0} = 0,1rad = 5,73^\circ \]

+ Lực căng dây tại VTCB:

T = mg(3 − 2cosα0) ≈ 1,01mg

 \[ \to \frac{T}{P} = \frac{{1,01mg}}{{mg}} = 1,01\]

Đáp án cần chọn là: C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời:

Từ phương trình li độ dài: s = 10sin(2t)

Tại \[t = \frac{\pi }{6}s\], ta có

\[s = 10\sin \left( {2.\frac{\pi }{6}} \right) = 3\sqrt 3 cm\]

Thế năng tại thời điểm đó:

\[{{\rm{W}}_t} = \frac{1}{2}m{\omega ^2}{s^2} = \frac{1}{2}0,{2.2^2}{\left( {5\sqrt 3 {{.10}^{ - 2}}} \right)^2} = {3.10^{ - 3}}J\]

Cơ năng của con lắc đơn:

\[{\rm{W}} = \frac{1}{2}m{\omega ^2}S_0^2 = \frac{1}{2}0,{2.2^2}{\left( {{{10.10}^{ - 2}}} \right)^2} = {4.10^{ - 3}}J\]

=>Động năng của  con lắc tại thời điểm đó:

\[{{\rm{W}}_d} = {\rm{W}} - {{\rm{W}}_t} = {4.10^{ - 3}} - {3.10^{ - 3}} = {10^{ - 3}}J\]

Đáp án cần chọn là: B

Lời giải

Trả lời:

Ta có: Thế năng và cơ năng của con lắc: 

\[{{\rm{W}}_t} = \frac{1}{2}mgl{\alpha ^2};{{\rm{W}}_d} = \frac{1}{2}mgl{\alpha _0}^2\]

Khi

\[{{\rm{W}}_d} = {{\rm{W}}_t}\]

\[ \to {\rm{W}} = {{\rm{W}}_d}{\rm{ + }}{{\rm{W}}_t} = 2{W_t}\]

\[ \leftrightarrow \frac{1}{2}mgl{\alpha _0}^2 = 2.\frac{1}{2}mgl{\alpha ^2}\]

\[ \to \alpha = \pm \frac{{{\alpha _0}}}{{\sqrt 2 }}\]

Con lắc chuyển động nhanh dần theo chiều dương khi con lắc chuyển động từ biên âm về VTCB theo chiều dương (vùng 3)

\[ \Rightarrow \alpha = - \frac{{{\alpha _0}}}{{\sqrt 2 }}\]

Đáp án cần chọn là: B

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP