Câu hỏi:

18/04/2022 353

Cho hàm số y=fx  liên tục trên \1  và có bảng biến thiên như sau:
Cho hàm số  y=f(X) liên tục trên R\1  và có bảng biến thiên như sau: (ảnh 1)

Đồ thị hàm số y=14fx225  có bao nhiêu đường tiệm cận đứng?

Đáp án chính xác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Ta có: 4fx225=0fx2=254fx=52fx=52.

Dựa vào bảng biến thiên ta thấy, phương trình fx=52 có 4 nghiệm phân biệt thuộc các khoảng ;2,2;1,1;2,2;+.

Phương trình fx=52 có 2 nghiệm phân biệt thuộc các khoảng 1;2 2;+.

Các nghiệm không trùng nhau.

Vậy đồ thị hàm số y=12fx225 có 6 đường tiệm cận đứng.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong không gian Oxyz, cho hai đường thẳng d1:x=2y=1+tz=2+2t;d2:x11=y+11=z31  . Đường thẳng Δ  vuông góc và cắt đồng thời hai đường thẳng d1  d2  có phương trình là:

Xem đáp án » 18/04/2022 5,759

Câu 2:

Gọi Mm lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số fx=cos22xsinxcosx  trên R. Giá trị M+m bằng:

Xem đáp án » 17/04/2022 3,047

Câu 3:

Một viên gạch hình vuông cạnh 40 cm. Người thiết kế đã sử dụng bốn đường parabol có chung đỉnh tại tâm viên gạch để tạo ra bốn cánh hoa (được tô màu như hình vẽ bên). Diện tích phần không tô màu của viên gạch bằng:

Một viên gạch hình vuông cạnh 40 cm. Người thiết kế đã sử dụng bốn đường parabol  (ảnh 1)

Xem đáp án » 18/04/2022 2,943

Câu 4:

Trong không gian Oxyz, cho mặt phẳng P:2xy+5z3=0. Vectơ nào dưới đây là một vectơ pháp tuyến của P ?

Xem đáp án » 17/04/2022 2,860

Câu 5:

Trong không gian Oxyz, hình chiếu vuông góc của điểm M(2;3;4) trên trục Oz là:

Xem đáp án » 17/04/2022 2,786

Câu 6:

Với a là số thực dương tùy ý, giá trị log4a8  bằng:

Xem đáp án » 28/04/2022 2,363

Câu 7:

Gọi S là tập hợp tất cả các số tự nhiên có 6 chữ số đôi một khác nhau được lập từ tập hợp X=1;2;3;4;5;6;7;8;9 . Chọn ngẫu nhiên một số từ S. Xác suất để chọn ra được một số có các chữ số 1, 2, 8, 9 trong đó các chữ số 1, 2 không đứng cạnh nhau và các chữ số 8, 9 không đứng cạnh nhau bằng:

Xem đáp án » 18/04/2022 1,745
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua