Câu hỏi:

19/04/2022 1,201 Lưu

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a. Tam giác SABvuông cân tại S và nằm trong mặt phẳng vuông góc với mặt đáy. Côsin của góc giữa mặt phẳng (SCD) và (ABCD) bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

Chọn đáp án D

Kẻ \(SH \bot AB \Rightarrow SH \bot \left( {ABC{\rm{D}}} \right)\).

Kẻ \(HK \bot C{\rm{D}} \Rightarrow \widehat {\left( {(SC{\rm{D}});(ABC{\rm{D}})} \right)} = \widehat {SKH}\)

\( \Rightarrow \cos \widehat {\left( {(SCD);(ABCD)} \right)} = \cos \widehat {SKH} = \frac{{HK}}{{SK}}\).

Cạnh \(SH = \frac{{AB}}{2} = a\)và \(HK = A{\rm{D}} = 2{\rm{a}}\)

\( \Rightarrow SK = \sqrt {S{H^2} + H{K^2}} = a\sqrt 5 \)

\( \Rightarrow \cos \widehat {\left( {(SCD);(ABCD)} \right)} = \frac{{HK}}{{SK}} = \frac{2}{{\sqrt 5 }}\).

 Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a. Tam giác SABvuông cân tại (ảnh 1)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải:

Chọn đáp án D

Ta có \(P = \cos \left( {\vec u;\vec v} \right) = \frac{{\vec u.\vec v}}{{\left| {\vec u} \right|.\left| {\vec v} \right|}} = \frac{{1.\left( { - 1} \right) + 0.2 + 2.0}}{{\sqrt {{1^2} + {0^2} + {2^2}} .\sqrt {{{\left( { - 1} \right)}^2} + {2^2} + {0^2}} }} = - \frac{1}{5}.\)

Lời giải

Lời giải:

Chọn đáp án A

Ta có \(d:\left\{ \begin{array}{l}x = 1 + t\\y = 1 + 2t\\z = 1 + t\end{array} \right.{\rm{ }}\left( {t \in \mathbb{R}} \right)\) và \(d':\left\{ \begin{array}{l}x = - 2 + 4t'\\y = 1 + 2t'\\z = 1 + t'\end{array} \right.{\rm{ }}\left( {t' \in \mathbb{R}} \right)\).

Điểm \(A = d \cap d' \Rightarrow A\left( {t + 1;2t + 1;t + 1} \right)\).

Giải hệ \(\left\{ {\begin{array}{*{20}{l}}{1 + t = - 2 + 4t'}\\{1 + 2t = 1 + 2t'}\\{1 + t = 1 + t'}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{\left\{ {\begin{array}{*{20}{l}}{t = 1}\\{t' = 1}\end{array}} \right.}\\{1 + t = 1 + t'}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{t = 1}\\{t' = 1}\end{array}} \right. \Rightarrow A\left( {2;3;2} \right) \Rightarrow S = 7.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP