Câu hỏi:

19/04/2022 358

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a. Tam giác SABvuông cân tại S và nằm trong mặt phẳng vuông góc với mặt đáy. Côsin của góc giữa mặt phẳng (SCD) và (ABCD) bằng

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

Chọn đáp án D

Kẻ \(SH \bot AB \Rightarrow SH \bot \left( {ABC{\rm{D}}} \right)\).

Kẻ \(HK \bot C{\rm{D}} \Rightarrow \widehat {\left( {(SC{\rm{D}});(ABC{\rm{D}})} \right)} = \widehat {SKH}\)

\( \Rightarrow \cos \widehat {\left( {(SCD);(ABCD)} \right)} = \cos \widehat {SKH} = \frac{{HK}}{{SK}}\).

Cạnh \(SH = \frac{{AB}}{2} = a\)và \(HK = A{\rm{D}} = 2{\rm{a}}\)

\( \Rightarrow SK = \sqrt {S{H^2} + H{K^2}} = a\sqrt 5 \)

\( \Rightarrow \cos \widehat {\left( {(SCD);(ABCD)} \right)} = \frac{{HK}}{{SK}} = \frac{2}{{\sqrt 5 }}\).

 Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a. Tam giác SABvuông cân tại (ảnh 1)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong không gian Oxyz,cho hai vectơ \[\vec u = \left( {1;0;2} \right)\] và \[\vec v = \left( { - 1;2;0} \right).\] Tính \[P = \cos \left( {\vec u;\vec v} \right).\]

Xem đáp án » 19/04/2022 7,327

Câu 2:

Trong không gian Oxyz,cho hai đường thẳng \[d:\frac{{x - 1}}{1} = \frac{{y - 1}}{2} = \frac{{z - 1}}{1}\] và \[d':\frac{{x + 2}}{4} = \frac{{y - 1}}{2} = \frac{{z - 1}}{1}.\] Biết rằng d cắt \[d'\] tại \[A\left( {a;b;c} \right).\] Tính \[S = a + b + c.\]

Xem đáp án » 19/04/2022 3,886

Câu 3:

Có bao nhiêu giá trị nguyên của tham số m để hàm số \[y = \left| {{x^4} - 4{x^3} - 8{x^2} - m} \right|\] có đúng 7 điểm cực trị?

Xem đáp án » 19/04/2022 1,979

Câu 4:

Gọi (H) là hình phẳng giới hạn bởi đồ thị hàm số \[y = {x^2} - 4x + 4\], trục tung và trục hoành. Xác định \[k\] để đường thẳng d đi qua điểm \[A\left( {0;4} \right)\] có hệ số góc \[k\] chia (H) thành hai phần có diện tích bằng nhau (như hình vẽ bên).

 Gọi (H) là hình phẳng giới hạn bởi đồ thị hàm số y=x^2-4x+4, trục tung và trục hoành. (ảnh 1)

Xem đáp án » 19/04/2022 1,622

Câu 5:

Cho \[a,{\rm{ }}b,{\rm{ }}x\] là các số thực dương tùy ý thỏa mãn \[{\log _2}x = 2{\log _2}a + 3{\log _2}b.\] Mệnh đề nào dưới đây là đúng?

Xem đáp án » 19/04/2022 1,115

Câu 6:

Cho hàm số f(x) có bảng biến thiên như sau:

 Cho hàm số f(x) có bảng biến thiên như sau:Hàm số đã cho đồng biến trên khoảng nào dưới đây? (ảnh 1)

Hàm số đã cho đồng biến trên khoảng nào dưới đây?

Xem đáp án » 19/04/2022 931

Câu 7:

Trong không gian Oxyz,cho điểm M thuộc mặt cầu (S) có phương trình \[{\left( {x - 3} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z - 2} \right)^2} = 9\] và ba điểm \[A\left( {1;0;0} \right)\], \[B\left( {2;1;3} \right)\]; \[C\left( {0;2; - 3} \right)\]. Biết rằng quỹ tích các điểm M thỏa mãn \[M{A^2} + 2\overrightarrow {MB} .\overrightarrow {MC} = 8\] là một đường tròn cố định, tính bán kính r đường tròn này.

Xem đáp án » 19/04/2022 908

Bình luận


Bình luận