Câu hỏi:

19/04/2022 159

Cho hình chóp S.ABCDcó đáy ABCDlà hình vuông cạnh \[a,{\rm{ }}SA\] vuông góc với mặt phẳng \[\left( {ABCD} \right)\]. Góc giữa đường thẳng SC và mặt phẳng \[\left( {ABCD} \right)\] bằng \[45^\circ \]. Khoảng cách giữa hai đường thẳng \[SB\] và \[AC\] bằng

Đáp án chính xác

Sách mới 2k7: Sổ tay Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 30k).

Sổ tay Toán-lý-hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

Chọn đáp án B

 Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với mặt p (ảnh 1)

Từ

\({\rm{AC // BE}} \Rightarrow {\rm{AC // }}\left( {SBE} \right)\)

\( \Rightarrow \left( {AC;SB} \right) = d\left( {AC;(SBE)} \right) = d\left( {A;(SBE)} \right) = d\)

Tứ diện vuông \(S.ABE \Rightarrow \frac{1}{{{d^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{B^2}}} + \frac{1}{{A{{\rm{E}}^2}}}\)

\(\widehat {\left( {SC;(ABC{\rm{D}})} \right)} = \widehat {SCA} = 45^\circ \Rightarrow SA = AC = a\sqrt 2 \)

\(A{\rm{E}} = BC = a \Rightarrow d = a\sqrt {\frac{2}{5}} \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong không gian Oxyz,cho hai vectơ \[\vec u = \left( {1;0;2} \right)\] và \[\vec v = \left( { - 1;2;0} \right).\] Tính \[P = \cos \left( {\vec u;\vec v} \right).\]

Xem đáp án » 19/04/2022 7,381

Câu 2:

Trong không gian Oxyz,cho hai đường thẳng \[d:\frac{{x - 1}}{1} = \frac{{y - 1}}{2} = \frac{{z - 1}}{1}\] và \[d':\frac{{x + 2}}{4} = \frac{{y - 1}}{2} = \frac{{z - 1}}{1}.\] Biết rằng d cắt \[d'\] tại \[A\left( {a;b;c} \right).\] Tính \[S = a + b + c.\]

Xem đáp án » 19/04/2022 3,991

Câu 3:

Có bao nhiêu giá trị nguyên của tham số m để hàm số \[y = \left| {{x^4} - 4{x^3} - 8{x^2} - m} \right|\] có đúng 7 điểm cực trị?

Xem đáp án » 19/04/2022 1,994

Câu 4:

Gọi (H) là hình phẳng giới hạn bởi đồ thị hàm số \[y = {x^2} - 4x + 4\], trục tung và trục hoành. Xác định \[k\] để đường thẳng d đi qua điểm \[A\left( {0;4} \right)\] có hệ số góc \[k\] chia (H) thành hai phần có diện tích bằng nhau (như hình vẽ bên).

 Gọi (H) là hình phẳng giới hạn bởi đồ thị hàm số y=x^2-4x+4, trục tung và trục hoành. (ảnh 1)

Xem đáp án » 19/04/2022 1,632

Câu 5:

Cho \[a,{\rm{ }}b,{\rm{ }}x\] là các số thực dương tùy ý thỏa mãn \[{\log _2}x = 2{\log _2}a + 3{\log _2}b.\] Mệnh đề nào dưới đây là đúng?

Xem đáp án » 19/04/2022 1,180

Câu 6:

Trong không gian Oxyz,cho điểm M thuộc mặt cầu (S) có phương trình \[{\left( {x - 3} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z - 2} \right)^2} = 9\] và ba điểm \[A\left( {1;0;0} \right)\], \[B\left( {2;1;3} \right)\]; \[C\left( {0;2; - 3} \right)\]. Biết rằng quỹ tích các điểm M thỏa mãn \[M{A^2} + 2\overrightarrow {MB} .\overrightarrow {MC} = 8\] là một đường tròn cố định, tính bán kính r đường tròn này.

Xem đáp án » 19/04/2022 979

Câu 7:

Cho hàm số f(x) có bảng biến thiên như sau:

 Cho hàm số f(x) có bảng biến thiên như sau:Hàm số đã cho đồng biến trên khoảng nào dưới đây? (ảnh 1)

Hàm số đã cho đồng biến trên khoảng nào dưới đây?

Xem đáp án » 19/04/2022 937

Bình luận


Bình luận