Câu hỏi:

19/04/2022 222

Cho khối chóp S.ABCcó hai điểm \[M,{\rm{ }}N\] lần lượt thuộc hai cạnh \[SA,{\rm{ }}SB\] sao cho \[MA = 2MS,{\rm{ }}NS = 2NB.\] Mặt phẳng \[\left( \alpha \right)\] qua hai điểm M, N và song song với SC chia khối chóp thành hai khối đa diện. Tính tỉ số thể tích t của hai khối đa diện đó, biết \[t < 1.\]

Đáp án chính xác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

Chọn đáp án D

Thiết diện là tứ giác MNPQnhư hình vẽ với \(NP{\rm{ // MQ // SC}}\).

 Cho khối chóp S.ABC có hai điểm M,N lần lượt thuộc hai cạnh SA,SB sao cho  (ảnh 1)

Ta có \({V_{MNABPQ}} = {V_{N.ABPQ}} + {V_{N.AMQ}}\).

+ \({V_{N.ABPQ}} = \frac{1}{3}d\left( {N;\left( {ABC} \right)} \right).{S_{ABPQ}} = \frac{1}{3}.\frac{1}{3}d\left( {S;\left( {ABC} \right)} \right).\left( {{S_{ABC}} - {S_{CPQ}}} \right).\)

+ \(\frac{{{S_{CPQ}}}}{{{S_{CBA}}}} = \frac{{CP}}{{CB}}.\frac{{CQ}}{{CA}} = \frac{2}{3}.\frac{1}{3} \Rightarrow {S_{CPQ}} = \frac{2}{9}{S_{ABC}} \Rightarrow {V_{N.ABPQ}} = \frac{1}{9}d\left( {S;\left( {ABC} \right)} \right).\frac{7}{9}{S_{ABC}} = \frac{7}{{27}}{V_{S.ABC}}.\)

\({V_{N.AMQ}} = \frac{1}{3}d\left( {N;\left( {AMQ} \right)} \right).{S_{AMQ}} = \frac{1}{3}.\frac{2}{3}d\left( {B;\left( {SAC} \right)} \right).\frac{4}{9}{S_{SAC}} = \frac{8}{{27}}{V_{S.ABC}}\)

\( \Rightarrow {V_{MNABPQ}} = {V_{N.ABPQ}} + {V_{N.AMQ}} = \frac{5}{9}{V_{S.ABCD}} \Rightarrow {V_{SMNPCQ}} = \frac{4}{9}{V_{S.ABCD}} \Rightarrow t = \frac{{{V_{SMNPCQ}}}}{{{V_{MNABPQ}}}} = \frac{4}{5}.\)

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong không gian Oxyz,cho hai vectơ \[\vec u = \left( {1;0;2} \right)\] và \[\vec v = \left( { - 1;2;0} \right).\] Tính \[P = \cos \left( {\vec u;\vec v} \right).\]

Xem đáp án » 19/04/2022 7,694

Câu 2:

Trong không gian Oxyz,cho hai đường thẳng \[d:\frac{{x - 1}}{1} = \frac{{y - 1}}{2} = \frac{{z - 1}}{1}\] và \[d':\frac{{x + 2}}{4} = \frac{{y - 1}}{2} = \frac{{z - 1}}{1}.\] Biết rằng d cắt \[d'\] tại \[A\left( {a;b;c} \right).\] Tính \[S = a + b + c.\]

Xem đáp án » 19/04/2022 5,279

Câu 3:

Có bao nhiêu giá trị nguyên của tham số m để hàm số \[y = \left| {{x^4} - 4{x^3} - 8{x^2} - m} \right|\] có đúng 7 điểm cực trị?

Xem đáp án » 19/04/2022 2,093

Câu 4:

Trong không gian Oxyz,cho điểm M thuộc mặt cầu (S) có phương trình \[{\left( {x - 3} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z - 2} \right)^2} = 9\] và ba điểm \[A\left( {1;0;0} \right)\], \[B\left( {2;1;3} \right)\]; \[C\left( {0;2; - 3} \right)\]. Biết rằng quỹ tích các điểm M thỏa mãn \[M{A^2} + 2\overrightarrow {MB} .\overrightarrow {MC} = 8\] là một đường tròn cố định, tính bán kính r đường tròn này.

Xem đáp án » 19/04/2022 1,733

Câu 5:

Gọi (H) là hình phẳng giới hạn bởi đồ thị hàm số \[y = {x^2} - 4x + 4\], trục tung và trục hoành. Xác định \[k\] để đường thẳng d đi qua điểm \[A\left( {0;4} \right)\] có hệ số góc \[k\] chia (H) thành hai phần có diện tích bằng nhau (như hình vẽ bên).

 Gọi (H) là hình phẳng giới hạn bởi đồ thị hàm số y=x^2-4x+4, trục tung và trục hoành. (ảnh 1)

Xem đáp án » 19/04/2022 1,694

Câu 6:

Một đội xây dựng gồm 10 công nhân và 3 kĩ sư. Có bao nhiêu cách chọn 1 kĩ sư làm tổ trưởng, 1 công nhân làm tổ phó và 5 công nhân làm tổ viên để lập một tổ công tác?

Xem đáp án » 19/04/2022 1,571

Câu 7:

Cho \[a,{\rm{ }}b,{\rm{ }}x\] là các số thực dương tùy ý thỏa mãn \[{\log _2}x = 2{\log _2}a + 3{\log _2}b.\] Mệnh đề nào dưới đây là đúng?

Xem đáp án » 19/04/2022 1,336
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua