Cho khối chóp S.ABCcó hai điểm \[M,{\rm{ }}N\] lần lượt thuộc hai cạnh \[SA,{\rm{ }}SB\] sao cho \[MA = 2MS,{\rm{ }}NS = 2NB.\] Mặt phẳng \[\left( \alpha \right)\] qua hai điểm M, N và song song với SC chia khối chóp thành hai khối đa diện. Tính tỉ số thể tích t của hai khối đa diện đó, biết \[t < 1.\]
Quảng cáo
Trả lời:
Lời giải:
Chọn đáp án D
Thiết diện là tứ giác MNPQnhư hình vẽ với \(NP{\rm{ // MQ // SC}}\).
Ta có \({V_{MNABPQ}} = {V_{N.ABPQ}} + {V_{N.AMQ}}\).
+ \({V_{N.ABPQ}} = \frac{1}{3}d\left( {N;\left( {ABC} \right)} \right).{S_{ABPQ}} = \frac{1}{3}.\frac{1}{3}d\left( {S;\left( {ABC} \right)} \right).\left( {{S_{ABC}} - {S_{CPQ}}} \right).\)
+ \(\frac{{{S_{CPQ}}}}{{{S_{CBA}}}} = \frac{{CP}}{{CB}}.\frac{{CQ}}{{CA}} = \frac{2}{3}.\frac{1}{3} \Rightarrow {S_{CPQ}} = \frac{2}{9}{S_{ABC}} \Rightarrow {V_{N.ABPQ}} = \frac{1}{9}d\left( {S;\left( {ABC} \right)} \right).\frac{7}{9}{S_{ABC}} = \frac{7}{{27}}{V_{S.ABC}}.\)
\({V_{N.AMQ}} = \frac{1}{3}d\left( {N;\left( {AMQ} \right)} \right).{S_{AMQ}} = \frac{1}{3}.\frac{2}{3}d\left( {B;\left( {SAC} \right)} \right).\frac{4}{9}{S_{SAC}} = \frac{8}{{27}}{V_{S.ABC}}\)
\( \Rightarrow {V_{MNABPQ}} = {V_{N.ABPQ}} + {V_{N.AMQ}} = \frac{5}{9}{V_{S.ABCD}} \Rightarrow {V_{SMNPCQ}} = \frac{4}{9}{V_{S.ABCD}} \Rightarrow t = \frac{{{V_{SMNPCQ}}}}{{{V_{MNABPQ}}}} = \frac{4}{5}.\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải:
Chọn đáp án D
Ta có \(P = \cos \left( {\vec u;\vec v} \right) = \frac{{\vec u.\vec v}}{{\left| {\vec u} \right|.\left| {\vec v} \right|}} = \frac{{1.\left( { - 1} \right) + 0.2 + 2.0}}{{\sqrt {{1^2} + {0^2} + {2^2}} .\sqrt {{{\left( { - 1} \right)}^2} + {2^2} + {0^2}} }} = - \frac{1}{5}.\)
Lời giải
Lời giải:
Chọn đáp án A
Ta có \(d:\left\{ \begin{array}{l}x = 1 + t\\y = 1 + 2t\\z = 1 + t\end{array} \right.{\rm{ }}\left( {t \in \mathbb{R}} \right)\) và \(d':\left\{ \begin{array}{l}x = - 2 + 4t'\\y = 1 + 2t'\\z = 1 + t'\end{array} \right.{\rm{ }}\left( {t' \in \mathbb{R}} \right)\).
Điểm \(A = d \cap d' \Rightarrow A\left( {t + 1;2t + 1;t + 1} \right)\).
Giải hệ \(\left\{ {\begin{array}{*{20}{l}}{1 + t = - 2 + 4t'}\\{1 + 2t = 1 + 2t'}\\{1 + t = 1 + t'}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{\left\{ {\begin{array}{*{20}{l}}{t = 1}\\{t' = 1}\end{array}} \right.}\\{1 + t = 1 + t'}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{t = 1}\\{t' = 1}\end{array}} \right. \Rightarrow A\left( {2;3;2} \right) \Rightarrow S = 7.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.