Câu hỏi:

19/04/2022 178 Lưu

ho hai số phức z, w thỏa mãn \[\left| {z - 1 - i} \right| = 1\] và \[\left| {\bar w - 2 - 3i} \right| = 2.\] Tìm giá trị nhỏ nhất của \[\left| {z - w} \right|\].

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

Chọn đáp án B

Điểm \(M\left( {x;y} \right)\) biểu diễn số phức \(z = x + yi{\rm{ }}\left( {x,y \in \mathbb{R}} \right) \Rightarrow \left| {x + yi - 1 - i} \right| = 1\)

\( \Rightarrow M\) thuộc đường tròn \(\left( {{C_1}} \right)\) có tâm \({I_1}\left( {1;1} \right)\) và bán kính \({R_1} = 1\).

Điểm \(N\left( {x';y'} \right)\) biểu diễn số phức \[{\rm{w}} = x' + y'.i{\rm{ }}\left( {x',y' \in \mathbb{R}} \right) \Rightarrow \left| {x' - y'.i - 2 - 3i} \right| = 2\]

\( \Rightarrow N\) thuộc đường tròn \(\left( {{C_2}} \right)\)có tâm \({I_2}\left( {2; - 3} \right)\) và bán kính \({R_2} = 2\).

Như vậy \(\left| {z - {\rm{w}}} \right| = MN\). Ta có \(\overrightarrow {{I_1}{I_2}} = \left( {1; - 4} \right) \Rightarrow {I_1}{I_2} = \sqrt {17} >{R_2} + {R_2}\)

\( \Rightarrow \left( {{C_1}} \right)\) và \(\left( {{C_2}} \right)\) ở ngoài nhau \( \Rightarrow M{N_{\min }} = {I_1}{I_2} - {R_1} - {R_2} = \sqrt {17} - 3\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải:

Chọn đáp án D

Ta có \(P = \cos \left( {\vec u;\vec v} \right) = \frac{{\vec u.\vec v}}{{\left| {\vec u} \right|.\left| {\vec v} \right|}} = \frac{{1.\left( { - 1} \right) + 0.2 + 2.0}}{{\sqrt {{1^2} + {0^2} + {2^2}} .\sqrt {{{\left( { - 1} \right)}^2} + {2^2} + {0^2}} }} = - \frac{1}{5}.\)

Lời giải

Lời giải:

Chọn đáp án A

Ta có \(d:\left\{ \begin{array}{l}x = 1 + t\\y = 1 + 2t\\z = 1 + t\end{array} \right.{\rm{ }}\left( {t \in \mathbb{R}} \right)\) và \(d':\left\{ \begin{array}{l}x = - 2 + 4t'\\y = 1 + 2t'\\z = 1 + t'\end{array} \right.{\rm{ }}\left( {t' \in \mathbb{R}} \right)\).

Điểm \(A = d \cap d' \Rightarrow A\left( {t + 1;2t + 1;t + 1} \right)\).

Giải hệ \(\left\{ {\begin{array}{*{20}{l}}{1 + t = - 2 + 4t'}\\{1 + 2t = 1 + 2t'}\\{1 + t = 1 + t'}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{\left\{ {\begin{array}{*{20}{l}}{t = 1}\\{t' = 1}\end{array}} \right.}\\{1 + t = 1 + t'}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{t = 1}\\{t' = 1}\end{array}} \right. \Rightarrow A\left( {2;3;2} \right) \Rightarrow S = 7.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP