Câu hỏi:

19/04/2022 953

Một sợi dây đàn hồi căng ngang, đang có sóng dừng ổn định. Trên dây, A là một điểm nút, B là một điểm bụng gần A nhất, C là trung điểm của AB, với AC = 10cm. Biết khoảng thời gian ngắn nhất giữa hai lần mà li độ dao động của phần tử tại B bằng biên độ dao động của phần tử tại C là 0,1s. Tốc độ truyền sóng trên dây là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Trả lời:

Vì B là điểm bụng gần nút A nhất

C- là trung điểm của AB =>

\[AC = \frac{\lambda }{8} = 10cm \to \lambda = 80cm\]

Biên độ dao động của phần tử tại C:

\[{A_C} = \sqrt 2 A\]

Khoảng thời gian ngắn nhất giữa hai lần mà li độ dao động của phần tử tại BB bằng biên độ dao động của phần tử tại C là:

\[\frac{T}{4} = 0,1s \to T = 0,4s\]

Vận tốc truyền sóng:

\[v = \frac{\lambda }{T} = \frac{{0,8}}{{0,4}} = 2m/s\]

Đáp án cần chọn là: A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Trả lời:

Điều kiện để có sóng dừng trên dây hai đầu cố định: 

\[l = k\frac{\lambda }{2}\left( {k \in N*} \right)\]

Có 1 bụng sóng khi k = 1 =>λ = 2l

Đáp án cần chọn là: B

Lời giải

Trả lời:

Khi khoảng cách giữa piston và đầu hởi của ống là L = 45cm thì đầu hở của ống nghe thấy âm thanh lớn

⇒ Đầu piston là nút sóng, đầu hở là bụng sóng.

Ta có hình vẽ minh họa:

Ống dài hở một đầu. Nó được đóng ở đầu kia bằng một piston có thể di chuyển được dọc theo ống, như hình vẽ. Loa tạo ra âm thanh có tần số 550Hz được đặt gần đầu hở của ống. Piston được dịch (ảnh 1)

Áp dụng điều kiện có sóng dừng một đầu là nút sóng một đầu là bụng sóng ta có:

\[l = \left( {2k + 1} \right)\frac{\lambda }{4} = \left( {2k + 1} \right)\frac{v}{{4f}}\]

\[ \Rightarrow f = \frac{{\left( {2k + 1} \right)v}}{{4.L}}\]

Để 

\[{f_{\min }} \Leftrightarrow {k_{\min }} = 0\]

\[ \Rightarrow {f_{\min }} = \frac{v}{{4.L}} = \frac{{330}}{{4.0,45}} = 183,33Hz\]

Đáp án cần chọn là: C

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP