Câu hỏi:

19/04/2022 339

Cho các số thực x,y,z thỏa mãn các điều kiện x,y0;z1  log2x+y+14x+y+3=2xy . Khi đó giá trị nhỏ nhất của biểu thức T=x+z+123x+y+y+22x+2z+3  tương ứng bằng:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D

Từ giả thiết ta có: log2x+y+14x+y+3=2xy1+log2x+y+14x+y+3=2xy+1log22x+2y+24x+y+3=2xy+1log22x+2y+24x+y+3=4x+y+32x+2y+2log22x+2y+2+2x+2y+2=log24x+y+3+4x+y+3

Xét hàm ft=log2t+t  f't=1tlnt+1>0ft  đồng biến trên 0;+ .

f2x+2y+2=f4x+y+32x+2y+2=4x+y+3y=2x+1.

Thay vào biểu thức T  ta được T=x+z+123x+y+y+22x+2z+3=x+z+125x+1+2x+32x+2z+3

Áp dụng bất đẳng thức: T=x+z+125x+1+2x+32x+2z+3x+z+1+2x+325x+1+x+2z+3=3x+z+426x+2z+4=12.3x+z+423x+z+2

Đặt t=3x+z+2T12.t+22t=12t+4t+412.2.t.4t+4=4

Dấu “=” xảy ra khi y=2x+1t=2=3x+z+2x+z+15x+1=2x+3x+2z+3x=z=0y=1

Suy ra giá trị nhỏ nhất của biểu thức T  Tmin=4.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án C

Có BCABBCSABCSAB

BM  là hình chiếu của CM  lên mặt phẳng SAB .

Suy ra CM,SAB=CMB^

Ta có: tanCMB^=BCMB=2ABSB=2ABSA2+AB2=2.2a2a32+2a2=1

Vậy CM,SAB=450.

Cho hình chóp SABC  có SA vuông góc với (ABC) , SA = 2a căn bậc 2 của 3, AB = 2a, tam giác vuông cân tại B (ảnh 1)

Lời giải

Đáp án C

Ta có:2fx4=0fx=2

Số nghiệm của phương trình bằng số giao điểm của đồ thị hàm số y=fx  và đường thẳng y=2 .

Dựa vào bảng biến thiên, ta có đồ thị hàm số y=fx  cắt đường thẳng y=2  tại 2 điểm phân biệt.

Vậy phương trình 2fx4=0  có 2 nghiệm phân biệt.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Tìm tập nghiệm S  của phương trình 3x=2 :

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay