Trong không gian với hệ tọa độ , cho điểm và mặt cầu có phương trình và điểm . Viết phương trình mặt phẳng qua và tiếp xúc với sao cho khoảng cách từ đến lớn nhất. Giả sử là một vectơ pháp tuyến của , tính tích .
Trong không gian với hệ tọa độ , cho điểm và mặt cầu có phương trình và điểm . Viết phương trình mặt phẳng qua và tiếp xúc với sao cho khoảng cách từ đến lớn nhất. Giả sử là một vectơ pháp tuyến của , tính tích .
Quảng cáo
Trả lời:
Đáp án D
Cách 1:
Mặt cầu có tâm và bán kính
nên điểm nằm ngoài mặt cầu.
nên điểm nằm ngoài mặt cầu.
không thẳng hàng.
Mặt phẳng qua và tiếp xúc với nên khi thay đổi thì tập hợp các đường thẳng qua và tiếp điểm tạo thành hình nón.
Gọi đạt giá trị lớn nhất đồng phẳng ( là hình chiếu của lên ).
Mặt phẳng qua và nhận làm vectơ pháp tuyến nên có phương trình .
Mặt phẳng tiếp xúc với .
Ta có: .
Gọi là vectơ pháp tuyến của mặt phẳng , chọn
Do
Thế (2) vào (1) ta được phương trình:
Thay vào (2) suy ra:
Vậy .
Cách 2:
Mặt cầu có tâm và bán kính
Mặt phẳng qua và nhận làm vectơ pháp tuyến nên có phương trình .
Mặt phẳng tiếp xúc với :
Dấu bằng xảy ra khi
Vậy .
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án C
Có
Có là hình chiếu của lên mặt phẳng .
Suy ra
Ta có:
Vậy .
Lời giải
Đáp án C
Ta có:
Số nghiệm của phương trình bằng số giao điểm của đồ thị hàm số và đường thẳng .
Dựa vào bảng biến thiên, ta có đồ thị hàm số cắt đường thẳng tại 2 điểm phân biệt.
Vậy phương trình có 2 nghiệm phân biệt.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.