Câu hỏi:

19/04/2022 979

Trong không gian với hệ tọa độ Oxyz , cho điểm  A0;8;2 và mặt cầu S  có phương trình S:x52+y+32+z72=72  và điểm B9;7;23 . Viết phương trình mặt phẳng P qua A và tiếp xúc với S sao cho khoảng cách từ B đến P  lớn nhất. Giả sử n=1;m;nm,n  là một vectơ pháp tuyến của P , tính tích m.n.

Đáp án chính xác

Sách mới 2k7: Sổ tay Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 30k).

Sổ tay Toán-lý-hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D

Trong không gian với hệ tọa độ Oxyz , cho điểm A(0;8;2) và mặt cầu (S) có phương trình (ảnh 1)

 

Cách 1:

Mặt cầu S có tâm  I5;3;7 và bán kính R=62

 IA=5;11;5IA=171>62 nên điểm  A nằm ngoài mặt cầu.

 IB=4;4;16IB=122>62 nên điểm B  nằm ngoài mặt cầu.

 A,I,B không thẳng hàng.

Mặt phẳng P  qua A  và tiếp xúc với S  nên khi  P thay đổi thì tập hợp các đường thẳng qua A  và tiếp điểm tạo thành hình nón.

Gọi AB,P=αdB,P=AB.sinα  đạt giá trị lớn nhất A,B,I,H  đồng phẳng AIBP  ( H là hình chiếu của B lên P ).

Mặt phẳng P qua A  và nhận n=1;m;n  làm vectơ pháp tuyến nên có phương trình x+mynz8m2n=0.

Mặt phẳng P  tiếp xúc với SdI,P=R .

5n11m+51+m2+n2=625n11m+52=721+m2+n249m247n2110mn+50n110m47=0  1

Ta có: IA,IB=156;70;24.

Gọi n1  là vectơ pháp tuyến của mặt phẳng AIB , chọn n1=13;5;2

Do AIBPn1.n=013+5m2n=0  2

Thế (2) vào (1) ta được phương trình: 2079m2+8910m+6831=0m=1m=68312079l

  Thay m=1  vào (2) suy ra: n=4

Vậy m.n=4.

Cách 2:

Mặt cầu S có tâm I5;3;7  và bán kính R=62

Mặt phẳng  P qua A  và nhận n=1;m;n  làm vectơ pháp tuyến nên có phương trình x+my+nz8m2n=0.

Mặt phẳng P  tiếp xúc với S:

dI,P=R5n11m+51+m2+n2=62dB,P=21n15m+91+m2+n2=5n11m+54m+16n+41+m2+n25n11m+5+44nm+11+m2+n262+442+12+12n2+m2+11+m2+n2=182

Dấu bằng xảy ra khi n4=m1=11m=1;n=4

Vậy m.n=4.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số y=fx xác định trên \1 , liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau:

Cho hàm số y = f(x)  xác định trên R khác -1 , liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau (ảnh 1)

Số nghiệm thực của phương trình 2fx4=0  là:

Xem đáp án » 19/04/2022 18,690

Câu 2:

Cho hình chóp S.ABC  SAABC,SA=2a3,AB=2a , tam giác vuông cân tại B . Gọi M  là trung điểm của SB . Góc giữa đường thẳng CM  và mặt phẳng SAB  bằng:

Xem đáp án » 19/04/2022 16,334

Câu 3:

Cho hàm số y=x33x2+6x+1  có đồ thị C . Tiếp tuyến của C có hệ số góc nhỏ nhất là bao nhiêu?

Xem đáp án » 19/04/2022 8,376

Câu 4:

Biết Fx  là một nguyên hàm của hàm fx=sin2x  Fπ4=1 . Tính Fπ6 ?

Xem đáp án » 19/04/2022 6,234

Câu 5:

Giá trị lớn nhất của hàm số y=1cosx  trên khoảng π2;3π2  là:

Xem đáp án » 19/04/2022 4,225

Câu 6:

Cho lăng trụ đứng tam giác ABC.A'B'C'  có đáy là một tam giác vuông cân tại B,AB=BC=a,AA'=a2,M  là trung điểm BC . Tính khoảng cách giữa hai đường thẳng AM  và B'C.

Xem đáp án » 19/04/2022 3,646

Câu 7:

Cho hàm số y=fx  xác định trên \1 , liên tục trên mỗi khoảng xác định và có bảng biến thiên như hình bên dưới:

Cho hàm số y = f(x) xác định trên R khác 1, liên tục trên mỗi khoảng xác định và có bảng biến thiên như hình bên dưới (ảnh 1)

Hỏi đồ thị hàm số đã cho có tất cả bao nhiêu đường tiệm cận?

Xem đáp án » 19/04/2022 2,687

Bình luận


Bình luận