Câu hỏi:
20/04/2022 212Cho phương trình \[f\left( x \right) = {x^3} - 3{x^2} - 6x + 1.\] Số nghiệm thực của phương trình \[\sqrt {f\left( {f\left( x \right) + 1} \right) + 1} = f\left( x \right) + 2\] là
Câu hỏi trong đề: Bộ đề minh họa môn Toán THPT Quốc gia năm 2022 (30 đề) !!
Bắt đầu thiQuảng cáo
Trả lời:
Chọn đáp án A
Đặt \(t = f\left( x \right) + 1 \Rightarrow t = {x^3} - 3{{\rm{x}}^2} - 6{\rm{x}} + 2\).
Ta có \(\sqrt {f\left( t \right) + 1} = t + 1 \Leftrightarrow \left\{ \begin{array}{l}t \ge - 1\\f\left( t \right) + 1 = {\left( {t + 1} \right)^2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}t \ge - 1\\\left( {{t^3} - 3{t^2} - 6t + 1} \right) + 1 = {t^2} + 2t + 1\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}t \ge - 1\\{t^3} - 4{t^2} - 8t + 1 = 0\end{array} \right. \Rightarrow \left[ \begin{array}{l}t = {t_1} \approx 5,44\\t = {t_2} \approx 0,12\end{array} \right. \Rightarrow \left[ \begin{array}{l}f\left( x \right) = {t_1} - 1 \approx 4,44\\f\left( x \right) = {t_2} - 1 \approx - 0,88\end{array} \right.\)
Ta có \(f'\left( x \right) = 3{{\rm{x}}^2} - 6{\rm{x}} - 6 = 0 \Rightarrow x = 1 \pm \sqrt 3 \).
Xét bảng sau:
Tính \(f\left( {1 - \sqrt 3 } \right) = 6\sqrt 3 - 6 \approx 4,39;{\rm{ f}}\left( {1 + \sqrt 3 } \right) = - 6 - \sqrt 6 \approx - 16,39\).
Từ đó \(f\left( x \right) = {t_1} - 1\) có đúng 1 nghiệm và \(f\left( x \right) = {t_2} - 1\) có đúng 3 nghiệm phân biệt (khác nghiệm nói trên).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong không gian Oxyz,cho hai điểm \[A\left( {1; - 3;2} \right),{\rm{ }}B\left( {2; - 2;3} \right).\] Tìm tọa độ điểm K đối xứng với A qua B.
Câu 2:
Tính \[P = \frac{1}{{{{\log }_2}2020!}} + \frac{1}{{{{\log }_3}2020!}} + \frac{1}{{{{\log }_4}2020!}} + .... + \frac{1}{{{{\log }_{2020}}2020!}}.\]
Câu 3:
Trong không gian với hệ tọa độ Oxyz,cho mặt phẳng \[\left( P \right):2x - 5y - z = 0\] và đường thẳng \[d:\frac{{x - 1}}{1} = \frac{{y + 1}}{1} = \frac{{z - 3}}{{ - 1}}.\] Viết phương trình đường thẳng Δ vuông góc mặt phẳng (P) tại giao điểm của đường thẳng dvà mặt phẳng (P).
Câu 4:
Trong không gian \[Oxyz\], cho điểm \[M\left( {1;0;1} \right)\] và đường thẳng \[d:\frac{{x - 1}}{1} = \frac{{y - 2}}{2} = \frac{{z - 3}}{3}\]. Đường thẳng đi qua M, vuông góc với dvà cắt Oz có phương trình là
Câu 5:
Trong không gian Oxyz,cho đường thẳng \[d:\frac{{x - 2}}{2} = \frac{{y + 3}}{1} = \frac{{z - 1}}{{ - 2}}.\] Vectơ nào dưới đây là một vectơ chỉ phương của d?
Câu 6:
Trong không gian Oxyz,cho mặt cầu \[\left( {{S_1}} \right):{\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 2} \right)^2} = 16\] và \[\left( {{S_2}} \right):{\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 1} \right)^2} = 9\] cắt nhau theo giao tuyến là đường tròn (C). Tìm tọa độ tâm của đường tròn (C).
Câu 7:
Cho hình thang \[ABCD\] có \[\widehat {BAD} = \widehat {ADC} = 90^\circ \] và \[AB = 8,{\rm{ }}CD = BC = 5.\] Tính thể tích V của khối tròn xoay, nhận được khi quay hình thang \[ABCD\] xung quanh trục \[AB.\]
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 1)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
CÂU TRẮC NGHIỆM ĐÚNG SAI
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 2)
45 bài tập Xác suất có lời giải
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 19)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận