Trong không gian Oxyz,cho hai điểm \[M\left( { - 2; - 2;1} \right),\] \[A\left( {1;2; - 3} \right)\] và đường thẳng \[d:\frac{{x + 1}}{2} = \frac{{y - 5}}{2} = \frac{z}{{ - 1}}\]. Tìm một vectơ chỉ phương \[\vec u{\mkern 1mu} {\mkern 1mu} \] của đường thẳng Δ đi qua M, vuông góc với đường thẳng dđồng thời cách điểm A một khoảng bé nhất.
Quảng cáo
Trả lời:
Chọn đáp án A
Điểm \(M\left( {x;y} \right)\) biểu diễn số phức \({z_1} = x + yi{\rm{ }}\left( {x,y \in \mathbb{R}} \right) \Rightarrow \left| {x + yi + 2 - 3i} \right| = 2\)
\( \Rightarrow M\) thuộc đường tròn \(\left( {{C_1}} \right)\) có tâm \({I_1}\left( { - 2;3} \right)\) và bán kính \({R_1} = 2\).
Điểm \(N\left( {x';y'} \right)\) biểu diễn số phức \({z_2} = x' + y'.i{\rm{ }}\left( {x',y' \in \mathbb{R}} \right) \Rightarrow \left| {x' - y'.i - 1 - 2i} \right| = 1\)
\( \Rightarrow N\) thuộc đường tròn \(\left( {{C_2}} \right)\) có tâm \({I_2}\left( {1; - 2} \right)\) và bán kính \({R_2} = 1\).
Như vậy \(\left| {{z_1} - {z_2}} \right| = MN\). Ta có \(\overrightarrow {{I_1}{I_2}} = \left( {3; - 5} \right) \Rightarrow {I_1}{I_2} = \sqrt {34} >{R_1} + {R_2}\)
\( \Rightarrow \left( {{C_1}} \right)\) và \(\left( {{C_2}} \right)\) ở ngoài nhau \( \Rightarrow M{N_{\max }} = {I_1}{I_2} + {R_1} + {R_2} = \sqrt {34} + 3\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn đáp án D
Ta có B là trung điểm của đoạn thẳng AK\( \Rightarrow \left\{ \begin{array}{l}\frac{{1 + {x_K}}}{2} = 2\\\frac{{ - 3 + {y_K}}}{2} = - 2\\\frac{{2 + {z_K}}}{2} = 3\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x_K} = 3\\{y_K} = - 1\\{z_K} = 4\end{array} \right. \Rightarrow K\left( {3; - 1;4} \right)\).
Lời giải
Chọn đáp án B
Ta có \(P = {\log _{2020!}}2 + {\log _{2020!}}3 + {\log _{2020!}}4 + ... + {\log _{2020!}}2020\)
\( = {\log _{2020!}}\left( {2.3.4...2020} \right) = {\log _{2020!}}\left( {2020!} \right) = 1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.