Câu hỏi:

20/04/2022 4,254

Cho hàm số y = f(x) là hàm đa thức bậc bốn có f(3) < 0, đồ thị hàm số y = f’(x) như hình vẽ.

Cho hàm số y = f(x) là hàm đa thức bậc bốn có f(3) < 0, đồ thị hàm số y = f’(x) như hình vẽ. Số điểm cực trị của hàm số (ảnh 1)

Số điểm cực trị của hàm số gx=fx12020 là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Từ hình vẽ có bảng biến thiên hàm số y=f(x)

Cho hàm số y = f(x) là hàm đa thức bậc bốn có f(3) < 0, đồ thị hàm số y = f’(x) như hình vẽ. Số điểm cực trị của hàm số (ảnh 2)

Ta có: g'(x)=2020f'(x1)f2019(x1)

Xét g'(x)=0f'(x1)=0  (1)f(x1)=0  (2)

Xét (1): Dựa vào đồ thị hàm số y=f'(x)

ta có: f'(x)=0x=1x=3  (nghiem kep)

f'(x1)=0x1=1x1=3x=0x=4(nghiem kep)

Xét (2): Do f(3)<0  nên f(x)=0  có hai nghiệm phân biệt thuộc (;1)  và (3;+)

Suy ra f(x1)=0  có hai nghiệm phân biệt x1(;0)  và x2(4;+)

Ta có: g'(x)=0x=0x=4  (nghiem kep)x=x1(;0)x=x2(4;+)

Do vậy hàm số g(x) có 3 điểm cực trị.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án B

Cách 1. Xét hàm số g(x) = f(x + 1), có g'(x) = f'(x + 1).

Ta có:  g'x=0f'x+1=0x+1=1x+1=0x+1=1x=2x=1x=0

Bảng biến thiên của hàm g(x)

Cho hàm số y = f(x) có bảng biến thiên như hình vẽ bên dưới . Hàm số g(x) = f (x +1) đạt cực tiểu tại (ảnh 2)


Từ bảng biến thiên của hàm g(x), ta thấy hàm số g(x) = f(x +1) đạt cực tiểu tại x = -1. 

Cách 2. Đồ thị hàm số g(x) có được bằng cách tịnh tiến đồ thị hàm số f(x) sang trái 1 đơn vị, mà đồ thị hàm số f(x) đạt cực tiểu tại x = 0 nên hàm số g(x) = f(x +1) đạt cực tiểu tại x = -1.

Lời giải

Đáp án A

Kẻ AH vuông góc BC khi đó ta có: BC=a3;SH=a113;AH=a63;SA=a53

Thể tích của khối chóp S.ABC là VS.ABC=13SA.SΔABC=a53.a222=a31018

Suy ra dA,SBC=3VS.ABCVΔSBC=a33033.

Cho hình chóp S.ABC có SA, AB, AC đôi một vuông góc, AB = a,AC = a căn bặc 2 của 2 và diện tích tam giác SBC bằng a^2. căn bậc 2 của 33 /6  . Khoảng cách từ điểm A đến măt phẳng (SBC) bằng (ảnh 1)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay