Câu hỏi:

23/04/2022 533

Cho hình chóp đều S.ABC có ASB^=30o,SA=1  . Lấy điểm B’, C’ lần lượt thuộc cạnh SB, SC sao cho chu vi tam giác AB’C’ là nhỏ nhất. Tỉ số VS.AB'C'VS.ABC=a+b3,a,b  . Giá trị 3a+4b bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D

Cắt tứ diện theo các cạnh SA, AC, AB rồi trải lên mặt phẳng (SBC)

Cho hình chóp đều S.ABC có góc ASB = 30 độ ; SA =1 . Lấy điểm B’, C’ lần lượt thuộc cạnh SB, SC  (ảnh 1)

Tam giác SBC giữ nguyên, tam giác SAB lật thành tam giác SAB; tam giác SAC thành tam giác SCA’.

Do đó: AC'=A'C';SA'=SA=1 

A1SA2^=A1SB^+BSC^+CSA2^=3.30=90o SA'=SA=1 nên ΔSAA' là tam giác vuông cân.

CAB'C'=AB'+B'C'+AC'=AB'+B'C'+A'C'AA'=2  không đổi,

Dấu “=” xảy ra khi và chỉ khi A, B’, C’, A’ thẳng hàng tức là khi B'Bo,C'Co 

Ta có SB'SB=SBoSB=SB0SA=sinSABo^sinSBoA^=sin45osin105o=1+3 

Vậy VS.AB'C'VS.ABC=SB'SB.SC'SC=SB'SB2=4233a+4b=4 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Tìm nguyên hàm của hàm số fx=xx

Lời giải

: Đáp án A

xxdx=x32dx=25x52+C=25x2x+C

Lời giải

Gọi Nx;y là điểm biểu diễn cho số phức z=x+yi 

Ta có: z¯+23iz2+i2x+y+20;z2+i5x22+y+1225  (hình tròn tâm I2;1, bán kính r=5). Tập hợp các điểm biểu diễn số phức z thỏa mãn điều kiện z¯+23iz2+i5  thuộc miền (T) (xem hình vẽ với A2;2;B2;6).

Ta có P+25=x+42+y+32P+25=x+42+y+32=NJ (với J4;3) 

Bài toán trở thành tìm điểm N thuộc miền (T) sao cho NJ đạt giá trị lớn nhất, nhỏ nhất.

Ta có: IJrNJJB2105P+2535402010P20 

Vậy m+M=602010 

Cho số phức  z=x+yi(x;y thuộc R)  thỏa mãn|z ngang +2-3i|<=|z-2+i|<=5   . Gọi m, M lần lượt là giá trị lớn nhất, (ảnh 1)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay