Câu hỏi:

25/04/2022 288 Lưu

Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng d : x31=y33=z2, mặt phẳng α : x+yz+3=0 và điểm A1;2;1. Viết phương trình đường thẳng Δ đi qua A cắt d và song song với mặt phẳng α.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Gọi giao điểm của Δ và d là B nên ta có: B3+t;3+3t;2tAB=2+t;1+3t;2t+1
Vì đường thẳng Δ song song với mặt phẳng α nên:
AB.nα=02+t+1+3t2t1=0t=1.
Suy ra: AB=1;2;1.
Phương trình đường thẳng Δ đi qua A và nhận AB làm vtcp: x11=y22=z+11.
Chọn đáp án C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Điều kiện: 9x>0x<9.
Ta có: log29x39x81x.
Đối chiếu điều kiện ta có 1x<9.
x nên x1;2;3;4;5;6;7;8.
Vậy có 8 nghiệm nguyên.
Chọn đáp án C

Lời giải

Ta có: SCABCD=C; SAABCD tại A.
Hình chiếu vuông góc của SC lên mặt phẳng (ABCD) là AC.
Góc giữa đường thẳng SC và mặt phẳng (ABCD) là α=SCA^.
Do là hình thoi cạnh a và ABC^=600 nên tam giác ABC đều cạnh a. Do đó AC=a.
Suy ra: tanSCA^=SAAC=33
Do đó: α=SBA^=30o
Vậy góc giữa đường thẳng SC và mặt phẳng (ABCD) bằng 30o.
Chọn đáp án A

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP