Câu hỏi:

25/04/2022 529 Lưu

Cho 0x2020log2(2x+2)+x3y=8y. Có bao nhiêu cặp số (x;y) nguyên thỏa mãn các điều kiện trên ?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Do 0x2020 nên log2(2x+2) luôn có nghĩa .
Ta có log2(2x+2)+x3y=8y
log2(x+1)+x+1=3y+23y
log2(x+1)+2log2(x+1)=3y+23y (1)
log2(x+1)+2log2(x+1)=3y+23y
Xét hàm số f(t)=t+2t.
Tập xác định D=f'(t)=1+2tln2f'(t)>0t.
Suy ra hàm số f(t) đồng biến trên R . Do đó (1)log2(x+1)=3yy=log8(x+1).
Ta có 0x2020 nên 1x+12021 suy ra 0log8(x+1)log820210ylog82021.
y nên y0;1;2;3.
Vậy có 4 cặp số (x;y) nguyên thỏa yêu cầu bài toán là các cặp (0;0), (7;1), (63;2), (511;3).
Chọn đáp án D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Điều kiện: 9x>0x<9.
Ta có: log29x39x81x.
Đối chiếu điều kiện ta có 1x<9.
x nên x1;2;3;4;5;6;7;8.
Vậy có 8 nghiệm nguyên.
Chọn đáp án C

Lời giải

Ta có: SCABCD=C; SAABCD tại A.
Hình chiếu vuông góc của SC lên mặt phẳng (ABCD) là AC.
Góc giữa đường thẳng SC và mặt phẳng (ABCD) là α=SCA^.
Do là hình thoi cạnh a và ABC^=600 nên tam giác ABC đều cạnh a. Do đó AC=a.
Suy ra: tanSCA^=SAAC=33
Do đó: α=SBA^=30o
Vậy góc giữa đường thẳng SC và mặt phẳng (ABCD) bằng 30o.
Chọn đáp án A

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP