Câu hỏi:

28/12/2019 1,669

Gọi S là tập các số tự nhiên có 4 chữ số phân biệt. Chọn ngẫu nhiên một số từ S. Xác suất để chọn được số lớn hơn 2500 là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Gọi số có 4 chữ số có dạng (a, b, c, d là các chữ số, ).

Số phần tử của không gian mẫu

Gọi A là biến cố “Chọn được số lớn hơn 2500”.

  • Trường hợp 1:

Chọn a: từ 3, 4,…, 9 → có 7 cách chọn.

Chọn b: khác a → có 9 cách chọn.

Chọn c: khác a, b → có 8 cách chọn.

Chọn d: khác a, b, c → có 7 cách chọn.

Vậy trường hợp này có số.

  • Trường hợp 2:

Chọn a: → có 1 cách chọn.

Chọn b: từ 6, 7, 8, 9 → có 4 cách chọn.

Chọn c: khác a, b → có 8 cách chọn.

Chọn d: khác a, b, c → có 7 cách chọn.

Vậy trường hợp này có số.

  • Trường hợp 3:

Chọn a: → có 1 cách chọn.

Chọn b: → có 1 cách chọn.

Chọn c: từ 1, 3, 4, 6, 7, 8, 9 → có 7 cách chọn.

Chọn d: khác a, b, c → có 7 cách chọn.

Vậy trường hợp này có số.

  • Trường hợp 4:

Chọn a: → có 1 cách chọn.

Chọn b: → có 1 cách chọn.

Chọn c: → có 1 cách chọn.

Chọn d: từ 1, 3, 4, 6, 7, 8, 9 → có 7 cách chọn.

Vậy trường hợp này có số.

Như vậy 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án A

Bạn Nam chọn 3 trong 10 câu nên

Gọi A là biến cố “Nam chọn ít nhất một câu hình học”.

Khi đó : “Nam không chọn được câu hình học nào” hay Nam chỉ chọn toàn câu đại số

Lời giải

Đáp án A

Sắp xếp các viên bi thành ba hàng lần lượt là hàng 1 gồm 4 viên vi vàng đánh số từ 1 đến 4; hàng 2 gồm các 5 viên bi đỏ đánh số từ 1 đến 5, hàng 3 gồm 6 viên bi xanh đánh số từ 1 đến 6 (đóng thẳng cột như hình vẽ).

Việc lựa chọn tiến hành theo ba bước sau:

Bước 1: Chọn 1 viên bi vàng ở hàng thứ nhất: có 4 cách thực hiện.

Sau đó ta xóa đi cột chứa viên bi vàng vừa được chọn.

Bước 2: Chọn 1 viên bi đỏ từ hàng thứ hai từ 4 viên bi đỏ còn lại (1 viên bi đỏ bị loại bỏ sau bước thứ nhất): có 4 cách thực hiện.

Sau đó ta tiếp tục xóa cột chứa viên bi đỏ vừa được chọn.

Bước 3: Chọn 1 viên bi xanh từ 4 viên bi xanh còn lại ở hàng thứ ba: có 4 cách chọn.

Vậy theo quy tắc nhân, có: cách chọn thỏa mãn

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay