Câu hỏi:

01/05/2022 217 Lưu

Đồ thị hàm số nào sau đây có đường tiệm cận ngang?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C.

+ Ta có hàm số \(y = \frac{x}{2}\) và \(y = {x^3} + 3x\) là hai hàm đa thức nên không có tiệm cận ngang.

+ Xét hàm số: \(y = \frac{1}{x}\)

\(\mathop {\lim }\limits_{x \to + \infty } \frac{1}{x} = 0;\mathop {\lim }\limits_{x \to - \infty } \frac{1}{x} = 0\) nên đồ thị hàm số có tiệm cận ngang là đường thẳng \(y = 0.\)

+ Xét hàm số: \(y = \frac{{{x^2} - 2x}}{{x - 1}}\)

\(\mathop {\lim }\limits_{x \to + \infty } \frac{{{x^2} - 2x}}{{x - 1}} = + \infty ;\mathop {\lim }\limits_{x \to - \infty } \frac{{{x^2} - 2x}}{{x - 1}} = - \infty \) nên đồ thị hàm số không có tiệm cận ngang.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án D.

Ta có \(1 - \cos 2x = 0 \Leftrightarrow \cos 2x = 1 \Leftrightarrow 2x = k2\pi \Leftrightarrow x = k\pi \left( {k \in \mathbb{Z}} \right).\)

Vậy tập nghiệm của phương trình là \(\left\{ {k\pi ,k \in \mathbb{Z}} \right\}.\)

Lời giải

Đáp án A.

Ta có \(y' = - \frac{1}{{{{\left( {x + 1} \right)}^2}}} < 0\) với mọi \(x \in \left[ {0;4} \right].\) Suy ra, hàm số luôn nghịch biến trên \(\left[ {0;4} \right].\)

Vậy \({y_{\min }} = y\left( 4 \right) = \frac{{11}}{5}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP