Câu hỏi:

01/05/2022 211 Lưu

Tập xác định của hàm số \(y = \sqrt {3 - 2x} + \sqrt {5 - 6x} \) là: 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B.

Điều kiện: \(\left\{ \begin{array}{l}3 - 2x \ge 0\\5 - 6x \ge 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \le \frac{3}{2}\\x \le \frac{5}{6}\end{array} \right. \Leftrightarrow x \le \frac{5}{6}.\)

Vậy tập xác định của hàm số là \(D = \left( { - \infty ;\frac{5}{6}} \right].\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án D.

Ta có \(1 - \cos 2x = 0 \Leftrightarrow \cos 2x = 1 \Leftrightarrow 2x = k2\pi \Leftrightarrow x = k\pi \left( {k \in \mathbb{Z}} \right).\)

Vậy tập nghiệm của phương trình là \(\left\{ {k\pi ,k \in \mathbb{Z}} \right\}.\)

Lời giải

Đáp án A.

Ta có \(y' = - \frac{1}{{{{\left( {x + 1} \right)}^2}}} < 0\) với mọi \(x \in \left[ {0;4} \right].\) Suy ra, hàm số luôn nghịch biến trên \(\left[ {0;4} \right].\)

Vậy \({y_{\min }} = y\left( 4 \right) = \frac{{11}}{5}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP