Câu hỏi:

01/05/2022 1,054 Lưu

Có bao nhiêu giá trị nguyên dương của \(m\) để hàm số \(y = \frac{{x - 8}}{{x - m}}\) đồng biến trên từng khoảng xác định của nó? 

A.7.

B. 9.

C.8.

D.6.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án A.

Tập xác định của hàm số \(D = \mathbb{R}\backslash \left\{ m \right\};y' = \frac{{8 - m}}{{{{\left( {x - m} \right)}^2}}}.\)

Để hàm số đồng biến trên từng khoảng xác định \( \Leftrightarrow y' >0,\forall x \ne m \Leftrightarrow 8 - m >0 \Leftrightarrow m < 8.\)

Vậy có 7 giá trị nguyên dương của \(m\) là \(1;2;3;4;5;6;7.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A.\(\left\{ {\frac{\pi }{2} + k2\pi ,k \in \mathbb{Z}} \right\}.\)

B.\(\left\{ {k2\pi ,k \in \mathbb{Z}} \right\}.\)

C.\(\left\{ {\frac{\pi }{4} + k\pi ,k \in \mathbb{Z}} \right\}.\)

D. \(\left\{ {k\pi ,k \in \mathbb{Z}} \right\}.\)

Lời giải

Đáp án D.

Ta có \(1 - \cos 2x = 0 \Leftrightarrow \cos 2x = 1 \Leftrightarrow 2x = k2\pi \Leftrightarrow x = k\pi \left( {k \in \mathbb{Z}} \right).\)

Vậy tập nghiệm của phương trình là \(\left\{ {k\pi ,k \in \mathbb{Z}} \right\}.\)

Lời giải

Đáp án A.

Ta có \(y' = - \frac{1}{{{{\left( {x + 1} \right)}^2}}} < 0\) với mọi \(x \in \left[ {0;4} \right].\) Suy ra, hàm số luôn nghịch biến trên \(\left[ {0;4} \right].\)

Vậy \({y_{\min }} = y\left( 4 \right) = \frac{{11}}{5}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A.\(\left[ { - 9; + \infty } \right).\)

B. \(\left( { - \infty ; - 9} \right).\)

C.\(\left( { - 9; + \infty } \right).\)

D. \(\left( { - \infty ; - 9} \right].\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A.\({x_1} + {x_2} = 2020.\)

B.\({x_1} + {x_2} = - 2020.\)

C. \({x_1} + {x_2} = - {2021^3}.\)

D. \({x_1} + {x_2} = - {3^{2021}}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP