Câu hỏi:
02/05/2022 1,766Hình chóp \(S.ABCD\) có đáy là hình chữ nhật với \(AB = 3,BC = 4,SC = 5.\) Tam giác \(SAC\) nhọn và nằm trong mặt phẳng vuông góc với \(\left( {ABCD} \right).\) Các mặt \(\left( {SAB} \right)\) và \(\left( {SAC} \right)\) tạo với nhau một góc \(\alpha \) và \(\cos \alpha = \frac{3}{{\sqrt {29} }}.\) Tính thể tích khối chóp \(S.ABCD\)
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).
Quảng cáo
Trả lời:
Đáp án C.
Kẻ \(SH \bot AC\left( {H \in AC} \right)\) vì \(\Delta SAC\) nhọn.
Ta có \(\left\{ \begin{array}{l}\left( {SAC} \right) \cap \left( {ABCD} \right) = AC\\SH \bot AC\end{array} \right. \Rightarrow SH \bot \left( {ABCD} \right).\)
Kẻ \(MB \bot AC \Rightarrow MB \bot \left( {SAC} \right) \Rightarrow MB \bot SA,\left( 1 \right).\)
Ta có \(AC = SC = 5\) nên \(\Delta SAC\) cân tại \(C.\)
Gọi \(E\) là trung điểm của \(SA\) nên \(SA \bot EC,\) kẻ \(MN//EC\left( {N \in SA} \right)\) nên \(SA \bot MN\left( 2 \right).\)
Từ (1), (2) suy ra \(SA \bot \left( {MNB} \right) \Rightarrow \widehat {BNM} = \alpha .\)
Ta có \(\frac{1}{{{{\cos }^2}\alpha }} = 1 + {\tan ^2}\alpha \Rightarrow \tan \alpha = \sqrt {\frac{1}{{{{\left( {\frac{3}{{\sqrt {29} }}} \right)}^2}}} - 1} = \frac{{2\sqrt 5 }}{3}.\)
Trong \(\Delta ABC:MB = \frac{{AB.BC}}{{\sqrt {A{B^2} + B{C^2}} }} = \frac{{12}}{5},AM = \sqrt {A{B^2} - M{B^2}} = \frac{9}{5}.\)
Trong \(\Delta BMN:MN = \frac{{MB}}{{\tan \alpha }} = \frac{{18\sqrt 5 }}{{25}}.\)
Trong \(\Delta SAC:\frac{{AM}}{{AC}} = \frac{{MN}}{{EC}} = \frac{{\frac{9}{5}}}{5} = \frac{9}{{25}}\) suy ra \(EC = \frac{{25MN}}{9} = 2\sqrt 5 .\)
Ta có \(SA = 2SE = 2\sqrt {S{C^2} - E{C^2}} = 2\sqrt 5 \)
Và \(SH.AC = SA.EC \Leftrightarrow SH = \frac{{SA.EC}}{{AC}} = \frac{{2\sqrt 5 .2\sqrt 5 }}{5} = 4.\)
Vậy thể tích khối chóp là \(V = \frac{1}{3}.SH.{S_{ABCD}} = \frac{1}{3}.4.3.4 = 16.\)
Đã bán 187
Đã bán 189
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Giá trị nhỏ nhất của hàm số \(y = \frac{{2x + 3}}{{x + 1}}\) trên đoạn \(\left[ {0;4} \right]\) là
Câu 3:
Tập hợp tất cả các giá trị thực của tham số \(m\) để hàm số \(y = mx - \frac{1}{{{x^3}}} + 2{x^3}\) đồng biến trên khoảng \(\left( {0; + \infty } \right)\) là
Câu 4:
Biết rằng phương trình \({\log _3}\left( {{x^2} - 2020x} \right) = 2021\) có 2 nghiệm \({x_1},{x_2}.\) Tính tổng \({x_1} + {x_2}.\)
Câu 5:
Một cửa hàng bán bưởi Đoan Hùng của Phú Thọ với giá bán mỗi quả là 50.000 đồng. Với giá này thì cửa hàng chỉ bán được khoảng 40 quả bưởi. Cửa hàng này dự định giảm giá bán, ước tính nếu cửa hàng cứ giảm mỗi quả 5000 đồng thì số bưởi bán được tăng thêm 50 quả. Xác định giá bán để cửa hàng đó thu được lợi nhuận lớn nhất, biết rằng giá nhập về ban đầu mỗi quả là 30.000 đồng.
Câu 6:
Cho hình chóp tứ giác \(S.ABCD\) có đáy là hình vuông cạnh \(AB = a,SA \bot \left( {ABCD} \right)\) và \(SA = a.\) Thể tích của khối chóp \(S.ABCD\) bằng
Câu 7:
Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy \(ABC\) vuông tại \(A,AB = a\sqrt 3 ,AC = AA' = a.\) Sin góc giữa đường thẳng \(AC'\) và mặt phẳng \(\left( {BCC'B'} \right)\) bằng
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 1)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 2)
45 bài tập Xác suất có lời giải
50 bài tập Nguyên hàm, tích phân và ứng dụng có lời giải
50 bài tập Hình học không gian có lời giải
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận