Câu hỏi:
02/05/2022 1,985Hình chóp \(S.ABCD\) có đáy là hình chữ nhật với \(AB = 3,BC = 4,SC = 5.\) Tam giác \(SAC\) nhọn và nằm trong mặt phẳng vuông góc với \(\left( {ABCD} \right).\) Các mặt \(\left( {SAB} \right)\) và \(\left( {SAC} \right)\) tạo với nhau một góc \(\alpha \) và \(\cos \alpha = \frac{3}{{\sqrt {29} }}.\) Tính thể tích khối chóp \(S.ABCD\)
Quảng cáo
Trả lời:
Đáp án C.
Kẻ \(SH \bot AC\left( {H \in AC} \right)\) vì \(\Delta SAC\) nhọn.
Ta có \(\left\{ \begin{array}{l}\left( {SAC} \right) \cap \left( {ABCD} \right) = AC\\SH \bot AC\end{array} \right. \Rightarrow SH \bot \left( {ABCD} \right).\)
Kẻ \(MB \bot AC \Rightarrow MB \bot \left( {SAC} \right) \Rightarrow MB \bot SA,\left( 1 \right).\)
Ta có \(AC = SC = 5\) nên \(\Delta SAC\) cân tại \(C.\)
Gọi \(E\) là trung điểm của \(SA\) nên \(SA \bot EC,\) kẻ \(MN//EC\left( {N \in SA} \right)\) nên \(SA \bot MN\left( 2 \right).\)
Từ (1), (2) suy ra \(SA \bot \left( {MNB} \right) \Rightarrow \widehat {BNM} = \alpha .\)
Ta có \(\frac{1}{{{{\cos }^2}\alpha }} = 1 + {\tan ^2}\alpha \Rightarrow \tan \alpha = \sqrt {\frac{1}{{{{\left( {\frac{3}{{\sqrt {29} }}} \right)}^2}}} - 1} = \frac{{2\sqrt 5 }}{3}.\)
Trong \(\Delta ABC:MB = \frac{{AB.BC}}{{\sqrt {A{B^2} + B{C^2}} }} = \frac{{12}}{5},AM = \sqrt {A{B^2} - M{B^2}} = \frac{9}{5}.\)
Trong \(\Delta BMN:MN = \frac{{MB}}{{\tan \alpha }} = \frac{{18\sqrt 5 }}{{25}}.\)
Trong \(\Delta SAC:\frac{{AM}}{{AC}} = \frac{{MN}}{{EC}} = \frac{{\frac{9}{5}}}{5} = \frac{9}{{25}}\) suy ra \(EC = \frac{{25MN}}{9} = 2\sqrt 5 .\)
Ta có \(SA = 2SE = 2\sqrt {S{C^2} - E{C^2}} = 2\sqrt 5 \)
Và \(SH.AC = SA.EC \Leftrightarrow SH = \frac{{SA.EC}}{{AC}} = \frac{{2\sqrt 5 .2\sqrt 5 }}{5} = 4.\)
Vậy thể tích khối chóp là \(V = \frac{1}{3}.SH.{S_{ABCD}} = \frac{1}{3}.4.3.4 = 16.\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án D.
Ta có \(1 - \cos 2x = 0 \Leftrightarrow \cos 2x = 1 \Leftrightarrow 2x = k2\pi \Leftrightarrow x = k\pi \left( {k \in \mathbb{Z}} \right).\)
Vậy tập nghiệm của phương trình là \(\left\{ {k\pi ,k \in \mathbb{Z}} \right\}.\)
Lời giải
Đáp án A.
Ta có \(y' = - \frac{1}{{{{\left( {x + 1} \right)}^2}}} < 0\) với mọi \(x \in \left[ {0;4} \right].\) Suy ra, hàm số luôn nghịch biến trên \(\left[ {0;4} \right].\)
Vậy \({y_{\min }} = y\left( 4 \right) = \frac{{11}}{5}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
CÂU TRẮC NGHIỆM ĐÚNG SAI
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 1)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 2)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 19)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
45 bài tập Xác suất có lời giải