Câu hỏi:

03/05/2022 2,774

Cho hàm số \(y = f'\left( x \right)\) có đồ thị như hình vẽ.

Cho hàm số y=f'(x) có đồ thị như hình vẽ. Hàm số g(x)=f(x^2)-(x^6)/3+x^4-x^2 đạt cực tiểu tại bao nhiêu điểm? (ảnh 1)

 Hàm số \(g\left( x \right) = f\left( {{x^2}} \right) - \frac{{{x^6}}}{3} + {x^4} - {x^2}\) đạt cực tiểu tại bao nhiêu điểm?

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D.

Cho hàm số y=f'(x) có đồ thị như hình vẽ. Hàm số g(x)=f(x^2)-(x^6)/3+x^4-x^2 đạt cực tiểu tại bao nhiêu điểm? (ảnh 2)

Ta có \(g'\left( x \right) = 2xf'\left( {{x^2}} \right) - 2{x^5} + 4{x^3} - 2x.\)

\(g'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}2x = 0\\f'\left( {{x^2}} \right) - {x^4} + 2{x^2} - 1 = 0\left( 1 \right)\end{array} \right..\)

Đặt \(t = {x^2}\left( {t \ge 0} \right),\) khi đó \(\left( 2 \right) \Leftrightarrow \left[ \begin{array}{l}t = 0\\t = 1\\t = 2\end{array} \right. \Rightarrow \left( 1 \right)\) có nghiệm \(x = 0,x = \pm 1,x = \pm \sqrt 2 .\)

\(f'\left( t \right) >{t^2} - 2t + 1 \Leftrightarrow 0 < t < 1 \Leftrightarrow 0 < {x^2} < 1 \Leftrightarrow - 1 < x < 1.\)

\(f'\left( t \right) < {t^2} - 2t + 1 \Leftrightarrow \left[ \begin{array}{l}t < 0\\t >1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x < - 1\\x >1\end{array} \right..\)

Bảng biến thiên

Cho hàm số y=f'(x) có đồ thị như hình vẽ. Hàm số g(x)=f(x^2)-(x^6)/3+x^4-x^2 đạt cực tiểu tại bao nhiêu điểm? (ảnh 3)

Suy ra, hàm số \(g\left( x \right) = f\left( {{x^2}} \right) - \frac{{{x^6}}}{3} + {x^4} - {x^2}\) đạt cực tiểu tại một điểm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Có tất cả bao nhiêu giá trị nguyên của tham số \(m\) để hàm số \(y = \frac{m}{3}{x^3} - 2m{x^2} + \left( {3m + 5} \right)x\) đồng biến trên \(\mathbb{R}.\) 

Xem đáp án » 03/05/2022 33,627

Câu 2:

Cho hàm số \(y = f\left( x \right)\). Đồ thị hàm số \(y = f'\left( x \right)\) như hình bên dưới

Cho hàm số y=f(x). Đồ thị hàm số y = f'(x) như hình bên dưới Hàm số g(x) = f(|x-3|) đồng biến trên các (ảnh 1)

 Hàm số \(g\left( x \right) = f\left( {\left| {3 - x} \right|} \right)\) đồng biến trên các khoảng nào trong các khoảng sau?

Xem đáp án » 05/05/2022 28,958

Câu 3:

Cho hình chóp đều \(S.ABCD\) có cạnh đáy bằng \(a\sqrt 2 ,\) cạnh bên bằng \(2a.\) Gọi \(\alpha \) là góc tạo bởi hai mặt phẳng \(\left( {SAC} \right)\) và \(\left( {SCD} \right).\) Tính \(\cos \alpha .\)

Xem đáp án » 05/05/2022 4,261

Câu 4:

Bảng biến thiên trong hình vẽ là của hàm số

Bảng biến thiên trong hình vẽ là của hàm số (ảnh 1)

Xem đáp án » 03/05/2022 3,908

Câu 5:

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a,SA\) vuông góc với đáy và \(SA = a\sqrt 3 .\) Góc giữa đường thẳng \(SD\) và mặt phẳng \(\left( {ABCD} \right)\) bằng 

Xem đáp án » 03/05/2022 3,649

Câu 6:

Cho hàm số \(y = - {x^4} + 2{x^2}\) có đồ thị như hình vẽ.

Cho hàm số y =  - x^4 + 2x^2 có đồ thị như hình vẽ. Tìm tất cả các giá trị thực của m để phương trình  - x^4 + 2x^2 = m (ảnh 1)

Tìm tất cả các giá trị thực của \(m\) để phương trình \( - {x^4} + 2{x^2} = m\) có hai nghiệm phân biệt.

Xem đáp án » 05/05/2022 3,060

Câu 7:

Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau

Cho hàm số y=f(x) có bảng biến thiên như sau. Biết giá trị lớn nhất và giá trị nhỏ nhất của hàm số lần lượt là M,m. (ảnh 1)

Biết giá trị lớn nhất và giá trị nhỏ nhất của hàm số lần lượt là \(M,m.\) Giá trị biểu thức \(P = {M^2} + {m^2}\) bằng

Xem đáp án » 03/05/2022 2,947

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store