Câu hỏi:

03/05/2022 216

Gọi \(S\) là tập hợp các giá trị thực của tham số \(m\) sao cho giá trị lớn nhất của hàm số \(y = \left| {\frac{{{x^2} + mx + m}}{{x + 1}}} \right|\) trên \(\left[ {1;2} \right]\) bằng 2. Số phần tử của \(S\) là 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D.

Đặt \(y = h\left( x \right) = \left| {\frac{{{x^2} + mx + m}}{{x + 1}}} \right|\)

Xét hàm số \(f\left( x \right) = \frac{{{x^2} + mx + m}}{{x + 1}} = \frac{{{x^2}}}{{x + 1}} + m,\) ta có: \(f'\left( x \right) = \frac{{{x^2} + 2x}}{{{{\left( {x + 1} \right)}^2}}} >0,\forall x \in \left[ {1;2} \right].\)

Suy ra hàm số \(f\left( x \right)\) đồng biến trên đoạn \(\left[ {1;2} \right].\)

\(\mathop {\min }\limits_{\left[ {1;2} \right]} f\left( x \right) = f\left( 1 \right) = \frac{1}{2} + m,\mathop {\max }\limits_{\left[ {1;2} \right]} f\left( x \right) = f\left( 2 \right) = \frac{4}{3} + m.\)

Nếu \(\frac{1}{2} + m >0 \Leftrightarrow m >- \frac{1}{2}\) thì \(\mathop {\max }\limits_{\left[ {1;2} \right]} h\left( x \right) = m + \frac{4}{3},\) suy ra: \(\frac{4}{3} + m = 2 \Leftrightarrow m = \frac{2}{3}\) (thỏa mãn).

Nếu \(\frac{4}{3} + m < 0 \Leftrightarrow m < - \frac{4}{3}\) thì \(\mathop {\max }\limits_{\left[ {1;2} \right]} h\left( x \right) = \left| {m + \frac{1}{2}} \right|,\) suy ra: \(\left| {m + \frac{1}{2}} \right| = 1 \Leftrightarrow \left[ \begin{array}{l}m = \frac{3}{2}\left( l \right)\\m = - \frac{5}{2}\end{array} \right..\)

Nếu \(\frac{1}{2} + m < 0 < \frac{4}{3} + m \Leftrightarrow - \frac{4}{3} < m < - \frac{1}{2}\) thì: \(\left| {m + \frac{1}{2}} \right| \le \left| m \right| + \frac{1}{2} \le \frac{4}{3} + \frac{1}{2} = \frac{{11}}{6} < 2,\) suy ra:

\(\left| {m + \frac{4}{3}} \right| = 2 \Leftrightarrow \left[ \begin{array}{l}m + \frac{4}{3} = 2\\m + \frac{4}{3} = - 2\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m = \frac{2}{3}\\m = - \frac{{10}}{3}\end{array} \right.\) (không thỏa mãn).

Vậy có hai giá trị \(m\) thỏa mãn: \(m = - \frac{5}{2}\) và \(m = \frac{2}{3}.\)

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Có tất cả bao nhiêu giá trị nguyên của tham số \(m\) để hàm số \(y = \frac{m}{3}{x^3} - 2m{x^2} + \left( {3m + 5} \right)x\) đồng biến trên \(\mathbb{R}.\) 

Xem đáp án » 03/05/2022 38,320

Câu 2:

Cho hàm số \(y = f\left( x \right)\). Đồ thị hàm số \(y = f'\left( x \right)\) như hình bên dưới

Cho hàm số y=f(x). Đồ thị hàm số y = f'(x) như hình bên dưới Hàm số g(x) = f(|x-3|) đồng biến trên các (ảnh 1)

 Hàm số \(g\left( x \right) = f\left( {\left| {3 - x} \right|} \right)\) đồng biến trên các khoảng nào trong các khoảng sau?

Xem đáp án » 05/05/2022 32,402

Câu 3:

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a,SA\) vuông góc với đáy và \(SA = a\sqrt 3 .\) Góc giữa đường thẳng \(SD\) và mặt phẳng \(\left( {ABCD} \right)\) bằng 

Xem đáp án » 03/05/2022 25,327

Câu 4:

Cho hình chóp đều \(S.ABCD\) có cạnh đáy bằng \(a\sqrt 2 ,\) cạnh bên bằng \(2a.\) Gọi \(\alpha \) là góc tạo bởi hai mặt phẳng \(\left( {SAC} \right)\) và \(\left( {SCD} \right).\) Tính \(\cos \alpha .\)

Xem đáp án » 05/05/2022 15,692

Câu 5:

Bảng biến thiên trong hình vẽ là của hàm số

Bảng biến thiên trong hình vẽ là của hàm số (ảnh 1)

Xem đáp án » 03/05/2022 4,442

Câu 6:

Cho hàm số \(y = f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}.\) Đồ thị hàm số \(y = f'\left( x \right)\) như hình bên dưới

Cho hàm số y=f(x) có đạo hàm liên tục trên R. Đồ thị hàm số y=f'(x) như hình bên dưới. Đặt g(x)=f(x)-x (ảnh 1)

Đặt \(g\left( x \right) = f\left( x \right) - x,\) khẳng định nào sau đây là đúng?

Xem đáp án » 05/05/2022 4,079

Câu 7:

Cho hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}\backslash \left\{ 1 \right\},\) liên tục trên mỗi khoảng và có bảng biến thiên như sau:

Cho hàm số y=f(x) xác định trên R khác 1, liên tục trên mỗi khoảng và có bảng biến thiên như sau: Tìm tập hợp  (ảnh 1)

 Tìm tập hợp tất cả các giá trị thực của tham số \(m\) sao cho phương trình \(f\left( x \right) = m\) có ba nghiệm thực phân biệt.

Xem đáp án » 03/05/2022 3,633
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay