Câu hỏi:

03/05/2022 189

Gọi \(S\) là tập hợp các giá trị thực của tham số \(m\) sao cho giá trị lớn nhất của hàm số \(y = \left| {\frac{{{x^2} + mx + m}}{{x + 1}}} \right|\) trên \(\left[ {1;2} \right]\) bằng 2. Số phần tử của \(S\) là 

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D.

Đặt \(y = h\left( x \right) = \left| {\frac{{{x^2} + mx + m}}{{x + 1}}} \right|\)

Xét hàm số \(f\left( x \right) = \frac{{{x^2} + mx + m}}{{x + 1}} = \frac{{{x^2}}}{{x + 1}} + m,\) ta có: \(f'\left( x \right) = \frac{{{x^2} + 2x}}{{{{\left( {x + 1} \right)}^2}}} >0,\forall x \in \left[ {1;2} \right].\)

Suy ra hàm số \(f\left( x \right)\) đồng biến trên đoạn \(\left[ {1;2} \right].\)

\(\mathop {\min }\limits_{\left[ {1;2} \right]} f\left( x \right) = f\left( 1 \right) = \frac{1}{2} + m,\mathop {\max }\limits_{\left[ {1;2} \right]} f\left( x \right) = f\left( 2 \right) = \frac{4}{3} + m.\)

Nếu \(\frac{1}{2} + m >0 \Leftrightarrow m >- \frac{1}{2}\) thì \(\mathop {\max }\limits_{\left[ {1;2} \right]} h\left( x \right) = m + \frac{4}{3},\) suy ra: \(\frac{4}{3} + m = 2 \Leftrightarrow m = \frac{2}{3}\) (thỏa mãn).

Nếu \(\frac{4}{3} + m < 0 \Leftrightarrow m < - \frac{4}{3}\) thì \(\mathop {\max }\limits_{\left[ {1;2} \right]} h\left( x \right) = \left| {m + \frac{1}{2}} \right|,\) suy ra: \(\left| {m + \frac{1}{2}} \right| = 1 \Leftrightarrow \left[ \begin{array}{l}m = \frac{3}{2}\left( l \right)\\m = - \frac{5}{2}\end{array} \right..\)

Nếu \(\frac{1}{2} + m < 0 < \frac{4}{3} + m \Leftrightarrow - \frac{4}{3} < m < - \frac{1}{2}\) thì: \(\left| {m + \frac{1}{2}} \right| \le \left| m \right| + \frac{1}{2} \le \frac{4}{3} + \frac{1}{2} = \frac{{11}}{6} < 2,\) suy ra:

\(\left| {m + \frac{4}{3}} \right| = 2 \Leftrightarrow \left[ \begin{array}{l}m + \frac{4}{3} = 2\\m + \frac{4}{3} = - 2\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m = \frac{2}{3}\\m = - \frac{{10}}{3}\end{array} \right.\) (không thỏa mãn).

Vậy có hai giá trị \(m\) thỏa mãn: \(m = - \frac{5}{2}\) và \(m = \frac{2}{3}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Có tất cả bao nhiêu giá trị nguyên của tham số \(m\) để hàm số \(y = \frac{m}{3}{x^3} - 2m{x^2} + \left( {3m + 5} \right)x\) đồng biến trên \(\mathbb{R}.\) 

Xem đáp án » 03/05/2022 35,985

Câu 2:

Cho hàm số \(y = f\left( x \right)\). Đồ thị hàm số \(y = f'\left( x \right)\) như hình bên dưới

Cho hàm số y=f(x). Đồ thị hàm số y = f'(x) như hình bên dưới Hàm số g(x) = f(|x-3|) đồng biến trên các (ảnh 1)

 Hàm số \(g\left( x \right) = f\left( {\left| {3 - x} \right|} \right)\) đồng biến trên các khoảng nào trong các khoảng sau?

Xem đáp án » 05/05/2022 30,439

Câu 3:

Cho hình chóp đều \(S.ABCD\) có cạnh đáy bằng \(a\sqrt 2 ,\) cạnh bên bằng \(2a.\) Gọi \(\alpha \) là góc tạo bởi hai mặt phẳng \(\left( {SAC} \right)\) và \(\left( {SCD} \right).\) Tính \(\cos \alpha .\)

Xem đáp án » 05/05/2022 5,003

Câu 4:

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a,SA\) vuông góc với đáy và \(SA = a\sqrt 3 .\) Góc giữa đường thẳng \(SD\) và mặt phẳng \(\left( {ABCD} \right)\) bằng 

Xem đáp án » 03/05/2022 4,863

Câu 5:

Bảng biến thiên trong hình vẽ là của hàm số

Bảng biến thiên trong hình vẽ là của hàm số (ảnh 1)

Xem đáp án » 03/05/2022 4,193

Câu 6:

Cho hàm số \(y = f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}.\) Đồ thị hàm số \(y = f'\left( x \right)\) như hình bên dưới

Cho hàm số y=f(x) có đạo hàm liên tục trên R. Đồ thị hàm số y=f'(x) như hình bên dưới. Đặt g(x)=f(x)-x (ảnh 1)

Đặt \(g\left( x \right) = f\left( x \right) - x,\) khẳng định nào sau đây là đúng?

Xem đáp án » 05/05/2022 3,480

Câu 7:

Cho hàm số \(y = - {x^4} + 2{x^2}\) có đồ thị như hình vẽ.

Cho hàm số y =  - x^4 + 2x^2 có đồ thị như hình vẽ. Tìm tất cả các giá trị thực của m để phương trình  - x^4 + 2x^2 = m (ảnh 1)

Tìm tất cả các giá trị thực của \(m\) để phương trình \( - {x^4} + 2{x^2} = m\) có hai nghiệm phân biệt.

Xem đáp án » 05/05/2022 3,229

Bình luận


Bình luận