Câu hỏi:
03/05/2022 266Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành và có thể tích \(V.\) Gọi \(E\) là điểm trên cạnh \(SC\) sao cho \(EC = 2ES.\) Gọi \(\left( \alpha \right)\) là mặt phẳng chứa đường thẳng \(AE\) và song song với đường thẳng \(BD,\left( \alpha \right)\) cắt hai cạnh \(SB,SD\) lần lượt tại \(M,N.\) Tính theo \(V\) thể tích khối chóp \(S.AMEN.\)
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án D.
Gọi \(O\) là tâm của hình bình hành \(ABCD.\)
Trong \(\left( {SAC} \right).\) Gọi \(I = SO \cap AE.\)
Từ \(I,\) kẻ đường thẳng song song với đường thẳng \(BD\) cắt hai cạnh \(SB,SD\) lần lượt tại \(M,N.\)
Gọi \(K\) là trung điểm \(EC \Rightarrow SE = EK = KC.\)
Do \(OK\) là đường trung bình của tam giác \(CAE \Rightarrow OK//IE \Rightarrow \frac{{SI}}{{SO}} = \frac{{SE}}{{SK}} = \frac{1}{2}.\)
Do \(MN//BD \Rightarrow \frac{{SM}}{{SB}} = \frac{{SN}}{{SD}} = \frac{{SI}}{{SO}} = \frac{1}{2}\)
Ta có: \({V_{S.AMBN}} = {V_{S.AMB}} + {V_{S.ABN}}.\)
\(\frac{{{V_{S.AME}}}}{{{V_{S.ABC}}}} = \frac{{SM}}{{SB}}.\frac{{SE}}{{SC}} = \frac{1}{2}.\frac{1}{3} = \frac{1}{6} \Rightarrow {V_{S.AME}} = \frac{1}{6}{V_{S.ABC}}.\)
\(\frac{{{V_{S.ANE}}}}{{{V_{S.ADC}}}} = \frac{{SN}}{{SD}}.\frac{{SE}}{{SC}} = \frac{1}{2}.\frac{1}{3} = \frac{1}{6} \Rightarrow {V_{S.ANE}} = \frac{1}{6}{V_{S.ACD}}.\)
\({V_{S.AMBN}} = {V_{S.AMB}} + {V_{S.ABN}} = \frac{1}{6}\left( {{V_{S.ABC}} + {V_{S.ACD}}} \right) = \frac{1}{6}{V_{S.ABCD}}.\)
\( \Rightarrow {V_{S.AMBN}} = \frac{1}{6}V.\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Có tất cả bao nhiêu giá trị nguyên của tham số \(m\) để hàm số \(y = \frac{m}{3}{x^3} - 2m{x^2} + \left( {3m + 5} \right)x\) đồng biến trên \(\mathbb{R}.\)
Câu 2:
Cho hàm số \(y = f\left( x \right)\). Đồ thị hàm số \(y = f'\left( x \right)\) như hình bên dưới
Hàm số \(g\left( x \right) = f\left( {\left| {3 - x} \right|} \right)\) đồng biến trên các khoảng nào trong các khoảng sau?
Câu 3:
Cho hình chóp đều \(S.ABCD\) có cạnh đáy bằng \(a\sqrt 2 ,\) cạnh bên bằng \(2a.\) Gọi \(\alpha \) là góc tạo bởi hai mặt phẳng \(\left( {SAC} \right)\) và \(\left( {SCD} \right).\) Tính \(\cos \alpha .\)
Câu 5:
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a,SA\) vuông góc với đáy và \(SA = a\sqrt 3 .\) Góc giữa đường thẳng \(SD\) và mặt phẳng \(\left( {ABCD} \right)\) bằng
Câu 6:
Cho hàm số \(y = - {x^4} + 2{x^2}\) có đồ thị như hình vẽ.
Tìm tất cả các giá trị thực của \(m\) để phương trình \( - {x^4} + 2{x^2} = m\) có hai nghiệm phân biệt.
Câu 7:
Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau
Biết giá trị lớn nhất và giá trị nhỏ nhất của hàm số lần lượt là \(M,m.\) Giá trị biểu thức \(P = {M^2} + {m^2}\) bằng
về câu hỏi!