Câu hỏi:
03/05/2022 504Gọi \(M\left( {{x_M};{y_M}} \right)\) là một điểm thuộc \(\left( C \right):y = {x^3} - 3{x^2} + 2,\) biết tiếp tuyến của \(\left( C \right)\) tại \(M\) cắt \(\left( C \right)\) tại điểm \(N\left( {{x_N};{y_N}} \right)\) (khác \(M\)) sao cho \(P = 5x_M^2 + x_N^2\) đạt giá trị nhỏ nhất. Tính \(OM.\)
Quảng cáo
Trả lời:
Đáp án D.
Hàm số \(y = {x^3} - 3{x^2} + 2\)
TXĐ: \(D = \mathbb{R}\)
Ta có: \(y' = 3{x^2} - 6x \Rightarrow \) Tiếp tuyến của \(\left( C \right)\) tại \(M\left( {{x_M};{y_M}} \right)\) có phương trình là:
\(y = \left( {3x_M^2 - 6{x_M}} \right)\left( {x - {x_M}} \right) + x_M^3 - 3x_M^2 + 2\)
Tiếp tuyến của \(\left( C \right)\) tại \(M\) cắt \(\left( C \right)\) tại điểm \(N\left( {{x_N};{y_N}} \right)\) (khác \(M)\) nên \({x_M};{x_N}\) là nghiệm của phương trình: \({x^3} - 3{x^2} + 2 = \left( {3x_M^2 - 6{x_M}} \right)\left( {x - {x_M}} \right) + x_M^3 - 3x_M^2 + 2\)
\( \Leftrightarrow \left( {{x^3} - x_M^3} \right) - 3\left( {{x^2} - x_M^2} \right) - \left( {3x_M^2 - 6{x_M}} \right)\left( {x - {x_M}} \right) = 0\)
\( \Leftrightarrow {\left( {x - {x_M}} \right)^2}\left( {x + 2{x_M} - 3} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = {x_M}\\x = - 2{x_M} + 3\end{array} \right.\)
\(M\) khác \(N \Leftrightarrow {x_M} \ne - 2{x_M} + 3 \Leftrightarrow 3{x_M} \ne 3 \Leftrightarrow {x_M} \ne 1 \Rightarrow {x_N} = - 2{x_M} + 3\)
Khi đó: \(P = 5x_M^2 + x_N^2 = 5x_M^2 + {\left( { - 2x_M^{} + 3} \right)^2} = 9x_M^2 - 12{x_M} + 9 = {\left( {3{x_M} - 2} \right)^2} + 5 \ge 5\) với \(\forall {x_M}\)
Dấu “=” xảy ra \( \Leftrightarrow {\left( {3{x_M} - 2} \right)^2} = 0 \Leftrightarrow 3{x_M} - 2 = 0 \Leftrightarrow 3{x_M} = 2 \Leftrightarrow {x_M} = \frac{2}{3}\) (thỏa mãn)
Với \({x_M} = \frac{2}{3} \Rightarrow {y_M} = \frac{{26}}{{27}} \Rightarrow OM = \sqrt {{{\left( {\frac{2}{3}} \right)}^2} + {{\left( {\frac{{26}}{{27}}} \right)}^2}} = \frac{{10\sqrt {10} }}{{27}}\)
Vậy \(OM = \frac{{10\sqrt {10} }}{{27}}.\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
Đã bán 986
Đã bán 1,1k
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Có tất cả bao nhiêu giá trị nguyên của tham số \(m\) để hàm số \(y = \frac{m}{3}{x^3} - 2m{x^2} + \left( {3m + 5} \right)x\) đồng biến trên \(\mathbb{R}.\)
Câu 2:
Cho hàm số \(y = f\left( x \right)\). Đồ thị hàm số \(y = f'\left( x \right)\) như hình bên dưới
Hàm số \(g\left( x \right) = f\left( {\left| {3 - x} \right|} \right)\) đồng biến trên các khoảng nào trong các khoảng sau?
Câu 3:
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a,SA\) vuông góc với đáy và \(SA = a\sqrt 3 .\) Góc giữa đường thẳng \(SD\) và mặt phẳng \(\left( {ABCD} \right)\) bằng
Câu 4:
Cho hình chóp đều \(S.ABCD\) có cạnh đáy bằng \(a\sqrt 2 ,\) cạnh bên bằng \(2a.\) Gọi \(\alpha \) là góc tạo bởi hai mặt phẳng \(\left( {SAC} \right)\) và \(\left( {SCD} \right).\) Tính \(\cos \alpha .\)
Câu 6:
Cho hàm số \(y = f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}.\) Đồ thị hàm số \(y = f'\left( x \right)\) như hình bên dưới
Đặt \(g\left( x \right) = f\left( x \right) - x,\) khẳng định nào sau đây là đúng?
Câu 7:
Cho hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}\backslash \left\{ 1 \right\},\) liên tục trên mỗi khoảng và có bảng biến thiên như sau:
Tìm tập hợp tất cả các giá trị thực của tham số \(m\) sao cho phương trình \(f\left( x \right) = m\) có ba nghiệm thực phân biệt.
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
CÂU TRẮC NGHIỆM ĐÚNG SAI
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 1)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 2)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 19)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 5)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận