Câu hỏi:
03/05/2022 533Gọi \(M\left( {{x_M};{y_M}} \right)\) là một điểm thuộc \(\left( C \right):y = {x^3} - 3{x^2} + 2,\) biết tiếp tuyến của \(\left( C \right)\) tại \(M\) cắt \(\left( C \right)\) tại điểm \(N\left( {{x_N};{y_N}} \right)\) (khác \(M\)) sao cho \(P = 5x_M^2 + x_N^2\) đạt giá trị nhỏ nhất. Tính \(OM.\)
Quảng cáo
Trả lời:
Đáp án D.
Hàm số \(y = {x^3} - 3{x^2} + 2\)
TXĐ: \(D = \mathbb{R}\)
Ta có: \(y' = 3{x^2} - 6x \Rightarrow \) Tiếp tuyến của \(\left( C \right)\) tại \(M\left( {{x_M};{y_M}} \right)\) có phương trình là:
\(y = \left( {3x_M^2 - 6{x_M}} \right)\left( {x - {x_M}} \right) + x_M^3 - 3x_M^2 + 2\)
Tiếp tuyến của \(\left( C \right)\) tại \(M\) cắt \(\left( C \right)\) tại điểm \(N\left( {{x_N};{y_N}} \right)\) (khác \(M)\) nên \({x_M};{x_N}\) là nghiệm của phương trình: \({x^3} - 3{x^2} + 2 = \left( {3x_M^2 - 6{x_M}} \right)\left( {x - {x_M}} \right) + x_M^3 - 3x_M^2 + 2\)
\( \Leftrightarrow \left( {{x^3} - x_M^3} \right) - 3\left( {{x^2} - x_M^2} \right) - \left( {3x_M^2 - 6{x_M}} \right)\left( {x - {x_M}} \right) = 0\)
\( \Leftrightarrow {\left( {x - {x_M}} \right)^2}\left( {x + 2{x_M} - 3} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = {x_M}\\x = - 2{x_M} + 3\end{array} \right.\)
\(M\) khác \(N \Leftrightarrow {x_M} \ne - 2{x_M} + 3 \Leftrightarrow 3{x_M} \ne 3 \Leftrightarrow {x_M} \ne 1 \Rightarrow {x_N} = - 2{x_M} + 3\)
Khi đó: \(P = 5x_M^2 + x_N^2 = 5x_M^2 + {\left( { - 2x_M^{} + 3} \right)^2} = 9x_M^2 - 12{x_M} + 9 = {\left( {3{x_M} - 2} \right)^2} + 5 \ge 5\) với \(\forall {x_M}\)
Dấu “=” xảy ra \( \Leftrightarrow {\left( {3{x_M} - 2} \right)^2} = 0 \Leftrightarrow 3{x_M} - 2 = 0 \Leftrightarrow 3{x_M} = 2 \Leftrightarrow {x_M} = \frac{2}{3}\) (thỏa mãn)
Với \({x_M} = \frac{2}{3} \Rightarrow {y_M} = \frac{{26}}{{27}} \Rightarrow OM = \sqrt {{{\left( {\frac{2}{3}} \right)}^2} + {{\left( {\frac{{26}}{{27}}} \right)}^2}} = \frac{{10\sqrt {10} }}{{27}}\)
Vậy \(OM = \frac{{10\sqrt {10} }}{{27}}.\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án A.
Tập xác định: \(D = \mathbb{R}.\)
*) Nếu \(m = 0\) ta có \(y = 5x.\) Đồ thị hàm số luôn đồng biến trên \(\mathbb{R}.\)
*) Nếu \(m \ne 0.\) Ta có: \(y' = m{x^2} - 4mx + 3m + 5.\)
Hàm số đồng biến trên \(\mathbb{R} \Leftrightarrow y' \ge 0,\forall x \in \mathbb{R}.\)
\( \Leftrightarrow m{x^2} - 4mx + 3m + 5 \ge 0,\forall x \in \mathbb{R}.\)
\( \Leftrightarrow \left\{ \begin{array}{l}\Delta ' \le 0\\a >0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}4{m^2} - m\left( {3m + 5} \right) \le 0\\m >0\end{array} \right..\)
\( \Leftrightarrow \left\{ \begin{array}{l}{m^2} - 5m \le 0\\m >0\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}0 \le m \le 5\\m >0\end{array} \right. \Leftrightarrow 0 < m \le 5\)
Kết hợp với điều kiện ta có: \(0 < m \le 5.\)
Vậy \(0 < m \le 5,m \in \mathbb{Z} \Rightarrow m \in \left\{ {0;1;2;3;4;5} \right\}.\)
Lời giải
Đáp án B.
Ta có \(y = g\left( x \right) = f\left( {\left| {x - 3} \right|} \right) \Rightarrow y' = \frac{{x - 3}}{{\left| {x - 3} \right|}}.f'\left( {\left| {x - 3} \right|} \right).\)
\(y' = 0 \Leftrightarrow \left[ \begin{array}{l}\left| {x - 3} \right| = - 1\left( L \right)\\\left| {x - 3} \right| = 1\\\left| {x - 3} \right| = 4\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 2 \vee x = 4\\x = - 1 \vee x = 7\end{array} \right.\) (Hàm số không có đạo hàm tại \(x = 3).\)
BBT
Vậy hàm số đồng biến trên khoảng \(\left( { - 1;2} \right).\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
CÂU TRẮC NGHIỆM ĐÚNG SAI
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 1)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 2)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 19)
45 bài tập Xác suất có lời giải
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 11)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận