Câu hỏi:
03/05/2022 293Gọi \(M\left( {{x_M};{y_M}} \right)\) là một điểm thuộc \(\left( C \right):y = {x^3} - 3{x^2} + 2,\) biết tiếp tuyến của \(\left( C \right)\) tại \(M\) cắt \(\left( C \right)\) tại điểm \(N\left( {{x_N};{y_N}} \right)\) (khác \(M\)) sao cho \(P = 5x_M^2 + x_N^2\) đạt giá trị nhỏ nhất. Tính \(OM.\)
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án D.
Hàm số \(y = {x^3} - 3{x^2} + 2\)
TXĐ: \(D = \mathbb{R}\)
Ta có: \(y' = 3{x^2} - 6x \Rightarrow \) Tiếp tuyến của \(\left( C \right)\) tại \(M\left( {{x_M};{y_M}} \right)\) có phương trình là:
\(y = \left( {3x_M^2 - 6{x_M}} \right)\left( {x - {x_M}} \right) + x_M^3 - 3x_M^2 + 2\)
Tiếp tuyến của \(\left( C \right)\) tại \(M\) cắt \(\left( C \right)\) tại điểm \(N\left( {{x_N};{y_N}} \right)\) (khác \(M)\) nên \({x_M};{x_N}\) là nghiệm của phương trình: \({x^3} - 3{x^2} + 2 = \left( {3x_M^2 - 6{x_M}} \right)\left( {x - {x_M}} \right) + x_M^3 - 3x_M^2 + 2\)
\( \Leftrightarrow \left( {{x^3} - x_M^3} \right) - 3\left( {{x^2} - x_M^2} \right) - \left( {3x_M^2 - 6{x_M}} \right)\left( {x - {x_M}} \right) = 0\)
\( \Leftrightarrow {\left( {x - {x_M}} \right)^2}\left( {x + 2{x_M} - 3} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = {x_M}\\x = - 2{x_M} + 3\end{array} \right.\)
\(M\) khác \(N \Leftrightarrow {x_M} \ne - 2{x_M} + 3 \Leftrightarrow 3{x_M} \ne 3 \Leftrightarrow {x_M} \ne 1 \Rightarrow {x_N} = - 2{x_M} + 3\)
Khi đó: \(P = 5x_M^2 + x_N^2 = 5x_M^2 + {\left( { - 2x_M^{} + 3} \right)^2} = 9x_M^2 - 12{x_M} + 9 = {\left( {3{x_M} - 2} \right)^2} + 5 \ge 5\) với \(\forall {x_M}\)
Dấu “=” xảy ra \( \Leftrightarrow {\left( {3{x_M} - 2} \right)^2} = 0 \Leftrightarrow 3{x_M} - 2 = 0 \Leftrightarrow 3{x_M} = 2 \Leftrightarrow {x_M} = \frac{2}{3}\) (thỏa mãn)
Với \({x_M} = \frac{2}{3} \Rightarrow {y_M} = \frac{{26}}{{27}} \Rightarrow OM = \sqrt {{{\left( {\frac{2}{3}} \right)}^2} + {{\left( {\frac{{26}}{{27}}} \right)}^2}} = \frac{{10\sqrt {10} }}{{27}}\)
Vậy \(OM = \frac{{10\sqrt {10} }}{{27}}.\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Có tất cả bao nhiêu giá trị nguyên của tham số \(m\) để hàm số \(y = \frac{m}{3}{x^3} - 2m{x^2} + \left( {3m + 5} \right)x\) đồng biến trên \(\mathbb{R}.\)
Câu 2:
Cho hàm số \(y = f\left( x \right)\). Đồ thị hàm số \(y = f'\left( x \right)\) như hình bên dưới
Hàm số \(g\left( x \right) = f\left( {\left| {3 - x} \right|} \right)\) đồng biến trên các khoảng nào trong các khoảng sau?
Câu 3:
Cho hình chóp đều \(S.ABCD\) có cạnh đáy bằng \(a\sqrt 2 ,\) cạnh bên bằng \(2a.\) Gọi \(\alpha \) là góc tạo bởi hai mặt phẳng \(\left( {SAC} \right)\) và \(\left( {SCD} \right).\) Tính \(\cos \alpha .\)
Câu 5:
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a,SA\) vuông góc với đáy và \(SA = a\sqrt 3 .\) Góc giữa đường thẳng \(SD\) và mặt phẳng \(\left( {ABCD} \right)\) bằng
Câu 6:
Cho hàm số \(y = - {x^4} + 2{x^2}\) có đồ thị như hình vẽ.
Tìm tất cả các giá trị thực của \(m\) để phương trình \( - {x^4} + 2{x^2} = m\) có hai nghiệm phân biệt.
Câu 7:
Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau
Biết giá trị lớn nhất và giá trị nhỏ nhất của hàm số lần lượt là \(M,m.\) Giá trị biểu thức \(P = {M^2} + {m^2}\) bằng
về câu hỏi!