Câu hỏi:

03/05/2022 401 Lưu

Cho tứ diện đều \(ABCD\) có cạnh bằng \(a.\) Gọi \(M,N\) lần lượt là trọng tâm các tam giác \(ABD,ABC\) và \(E\) là điểm đối xứng với \(B\) qua \(D.\) Mặt phẳng \(MNE\) chia khối tứ diện \(ABCD\) thành hai khối đa diện, trong đó khối đa diện chứa đỉnh \(A\) có thể tích \(V.\) Tính \(V.\) 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A.

Cho tứ diện đều ABCD có cạnh bằng a. Gọi M,N\ lần lượt là trọng tâm các tam giác ABD,ABC và E là điểm đối xứng  (ảnh 1)Cho tứ diện đều ABCD có cạnh bằng a. Gọi M,N\ lần lượt là trọng tâm các tam giác ABD,ABC và E là điểm đối xứng  (ảnh 2)

Xét mặt phẳng chứa tam giác \(ABD\). Gọi \(D'\) trên \(IE\) sao cho \[DD'//AQ\] ta có: \(\frac{{DD'}}{{MQ}} = \frac{{ED}}{{EQ}} = \frac{2}{3}\)

Mà \(\Delta KDD' \sim \Delta KAM \Rightarrow \frac{{KD}}{{KA}} = \frac{{DD'}}{{AM}} = \frac{{DD'}}{{2MQ}} = \frac{1}{3}\)

Gọi \(M'\) trên \(BD\) sao cho \(MM'//AB.\) Ta có:

\(M'Q = \frac{1}{3}BQ = \frac{1}{3}.\frac{1}{4}BE = \frac{1}{{12}}BE \Rightarrow EM' = 3EQ + QM' = \left( {\frac{3}{4} + \frac{1}{{12}}} \right)BE = \frac{5}{6}BE\)

\( \Rightarrow \frac{{MM'}}{{IB}} = \frac{{EM'}}{{EB}} = \frac{5}{6} \Rightarrow MM' = \frac{5}{6}IB\)

Xét mặt tam giác \(ABQ\). Ta có \(\frac{{MM'}}{{AB}} = \frac{{QM}}{{QA}} = \frac{1}{3} \Rightarrow \frac{5}{6}\frac{{IB}}{{AB}} = \frac{1}{3} \Rightarrow \frac{{IB}}{{AB}} = \frac{2}{5} \Rightarrow \frac{{AI}}{{AB}} = \frac{3}{5}\)

Vì \(MN//PQ//CD \Rightarrow MN//\left( {ACD} \right) \Rightarrow MN//JK//CD \Rightarrow \frac{{AJ}}{{AC}} = \frac{{AK}}{{AD}} = \frac{3}{4}\)

Vì \(ABCD\) là tứ diện đều có cạnh bằng \(a \Rightarrow {V_{ABCD}} = \frac{{{a^3}\sqrt 2 }}{{12}}\)

Ta lại có: \(\frac{{{V_{AIJK}}}}{{{V_{ABCD}}}} = \frac{{AI}}{{AB}}.\frac{{AJ}}{{AC}}.\frac{{AK}}{{AD}} = \frac{3}{5}.\frac{3}{4}.\frac{3}{4} = \frac{{27}}{{80}} \Rightarrow {V_{AIJK}} = \frac{{27}}{{80}}{V_{ABCD}} = \frac{{27}}{{80}}\frac{{{a^3}\sqrt 2 }}{{12}} = \frac{{9\sqrt 2 {a^3}}}{{320}}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án A.

Tập xác định: \(D = \mathbb{R}.\)

*) Nếu \(m = 0\) ta có \(y = 5x.\) Đồ thị hàm số luôn đồng biến trên \(\mathbb{R}.\)

*) Nếu \(m \ne 0.\) Ta có: \(y' = m{x^2} - 4mx + 3m + 5.\)

Hàm số đồng biến trên \(\mathbb{R} \Leftrightarrow y' \ge 0,\forall x \in \mathbb{R}.\)

\( \Leftrightarrow m{x^2} - 4mx + 3m + 5 \ge 0,\forall x \in \mathbb{R}.\)

\( \Leftrightarrow \left\{ \begin{array}{l}\Delta ' \le 0\\a >0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}4{m^2} - m\left( {3m + 5} \right) \le 0\\m >0\end{array} \right..\)

\( \Leftrightarrow \left\{ \begin{array}{l}{m^2} - 5m \le 0\\m >0\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}0 \le m \le 5\\m >0\end{array} \right. \Leftrightarrow 0 < m \le 5\)

Kết hợp với điều kiện ta có: \(0 < m \le 5.\)

Vậy \(0 < m \le 5,m \in \mathbb{Z} \Rightarrow m \in \left\{ {0;1;2;3;4;5} \right\}.\)

Lời giải

Đáp án B.

Ta có \(y = g\left( x \right) = f\left( {\left| {x - 3} \right|} \right) \Rightarrow y' = \frac{{x - 3}}{{\left| {x - 3} \right|}}.f'\left( {\left| {x - 3} \right|} \right).\)

\(y' = 0 \Leftrightarrow \left[ \begin{array}{l}\left| {x - 3} \right| = - 1\left( L \right)\\\left| {x - 3} \right| = 1\\\left| {x - 3} \right| = 4\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 2 \vee x = 4\\x = - 1 \vee x = 7\end{array} \right.\) (Hàm số không có đạo hàm tại \(x = 3).\)

BBT

Cho hàm số y=f(x). Đồ thị hàm số y = f'(x) như hình bên dưới Hàm số g(x) = f(|x-3|) đồng biến trên các (ảnh 2)

Vậy hàm số đồng biến trên khoảng \(\left( { - 1;2} \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP