Câu hỏi:

05/05/2022 2,773

Cho hàm số \(f\left( x \right)\) xác định và liên tục trên \(\mathbb{R}.\) Đồ thị hàm số \(f'\left( x \right)\) như hình vẽ dưới đây

Cho hàm số f(x) xác định và liên tục trên R. Đồ thị hàm số f'(x) như hình vẽ dưới đây Xét hàm số g(x)=f(x(-1/3x^3-3/4x^2+3/2x+2019 (ảnh 1)

 Xét hàm số \(g\left( x \right) = f\left( x \right) - \frac{1}{3}{x^3} - \frac{3}{4}{x^2} + \frac{3}{2}x + 2019.\) Trong các mệnh đề sau:

\(\left( I \right)g\left( 0 \right) < g\left( 1 \right).\)

\(\left( {II} \right)\mathop {\min }\limits_{\left[ { - 3;1} \right]} g\left( x \right) = g\left( { - 1} \right).\)

\(\left( {III} \right)\) Hàm số \(g\left( x \right)\) nghịch biến trên \(\left( { - 3; - 1} \right).\)

\(\left( {IV} \right)\mathop {\max }\limits_{\left[ { - 3;1} \right]} g\left( x \right) = \mathop {\max }\limits_{\left[ { - 3;1} \right]} \left\{ {g\left( { - 3} \right);g\left( 1 \right)} \right\}.\)

Số mệnh đề đúng là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D.

Ta có: \(g'\left( x \right) = f'\left( x \right) - \left( {{x^2} + \frac{3}{2}x - \frac{3}{2}} \right) = f'\left( x \right) - h\left( x \right).\)

Ta vẽ đồ thị hàm số \(h\left( x \right) = {x^2} + \frac{3}{2}x - \frac{3}{2}\) và \(y = f'\left( x \right)\) trên cùng một hệ trục:

Đồ thị hàm số \(y = h\left( x \right)\) có đỉnh \(I\left( { - 1; - 2} \right)\) và đi qua các điểm \(\left( { - 3; - 3} \right),\left( {1;1} \right).\)

Cho hàm số f(x) xác định và liên tục trên R. Đồ thị hàm số f'(x) như hình vẽ dưới đây Xét hàm số g(x)=f(x(-1/3x^3-3/4x^2+3/2x+2019 (ảnh 2)
Từ bảng biến thiên suy ra

\(\left( I \right)\)\(g\left( 0 \right) < g\left( 1 \right).\) Đúng.

\(\left( {II} \right)\)\(\mathop {\min }\limits_{\left[ { - 3;1} \right]} g\left( x \right) = g\left( { - 1} \right).\) Đúng.

\(\left( {III} \right)\)Hàm số \(g\left( x \right)\) nghịch biến trên \(\left( { - 3; - 1} \right).\) Đúng.

\(\left( {IV} \right)\)\(\mathop {\max }\limits_{\left[ { - 3;1} \right]} g\left( x \right) = \mathop {\max }\limits_{\left[ { - 3;1} \right]} \left\{ {g\left( { - 3} \right);g\left( 1 \right)} \right\}.\) Đúng.

Vậy cả bốn mệnh đề đều đúng.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án A.

Tập xác định: \(D = \mathbb{R}.\)

*) Nếu \(m = 0\) ta có \(y = 5x.\) Đồ thị hàm số luôn đồng biến trên \(\mathbb{R}.\)

*) Nếu \(m \ne 0.\) Ta có: \(y' = m{x^2} - 4mx + 3m + 5.\)

Hàm số đồng biến trên \(\mathbb{R} \Leftrightarrow y' \ge 0,\forall x \in \mathbb{R}.\)

\( \Leftrightarrow m{x^2} - 4mx + 3m + 5 \ge 0,\forall x \in \mathbb{R}.\)

\( \Leftrightarrow \left\{ \begin{array}{l}\Delta ' \le 0\\a >0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}4{m^2} - m\left( {3m + 5} \right) \le 0\\m >0\end{array} \right..\)

\( \Leftrightarrow \left\{ \begin{array}{l}{m^2} - 5m \le 0\\m >0\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}0 \le m \le 5\\m >0\end{array} \right. \Leftrightarrow 0 < m \le 5\)

Kết hợp với điều kiện ta có: \(0 < m \le 5.\)

Vậy \(0 < m \le 5,m \in \mathbb{Z} \Rightarrow m \in \left\{ {0;1;2;3;4;5} \right\}.\)

Lời giải

Đáp án B.

Ta có \(y = g\left( x \right) = f\left( {\left| {x - 3} \right|} \right) \Rightarrow y' = \frac{{x - 3}}{{\left| {x - 3} \right|}}.f'\left( {\left| {x - 3} \right|} \right).\)

\(y' = 0 \Leftrightarrow \left[ \begin{array}{l}\left| {x - 3} \right| = - 1\left( L \right)\\\left| {x - 3} \right| = 1\\\left| {x - 3} \right| = 4\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 2 \vee x = 4\\x = - 1 \vee x = 7\end{array} \right.\) (Hàm số không có đạo hàm tại \(x = 3).\)

BBT

Cho hàm số y=f(x). Đồ thị hàm số y = f'(x) như hình bên dưới Hàm số g(x) = f(|x-3|) đồng biến trên các (ảnh 2)

Vậy hàm số đồng biến trên khoảng \(\left( { - 1;2} \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Bảng biến thiên trong hình vẽ là của hàm số

Bảng biến thiên trong hình vẽ là của hàm số (ảnh 1)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Cho hàm số \(y = f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}.\) Đồ thị hàm số \(y = f'\left( x \right)\) như hình bên dưới

Cho hàm số y=f(x) có đạo hàm liên tục trên R. Đồ thị hàm số y=f'(x) như hình bên dưới. Đặt g(x)=f(x)-x (ảnh 1)

Đặt \(g\left( x \right) = f\left( x \right) - x,\) khẳng định nào sau đây là đúng?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay