Câu hỏi:

05/05/2022 1,192

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Hai điểm \(M,N\) lần lượt thuộc các đoạn thẳng \(AB\) và \(AD(M\) và \(N\) không trùng với \(A)\) sao cho \(\frac{{AB}}{{AM}} + 2\frac{{AD}}{{AN}} = 4.\) Kí hiệu \(V,{V_1}\) lần lượt là thể tích của các khối chóp \(S.ABCD\) và \(S.MBCDN.\) Tìm giá trị lớn nhất của tỉ số \(\frac{{{V_1}}}{V}.\) 

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C.

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Hai điểm M,N lần lượt thuộc các đoạn thẳng AB và AD(M và  (ảnh 1)

Ta có: \(\frac{{{V_1}}}{V} = \frac{{{V_{S.MBCDN}}}}{{{V_{S.ABCD}}}} = \frac{{{V_{S.ABCD}} - {V_{S.AMN}}}}{{{V_{S.ABCD}}}} = 1 - \frac{{{V_{S.AMN}}}}{{{V_{S.ABCD}}}} = 1 - k\)

Với \(k = \frac{{{V_{S.AMN}}}}{{{V_{S.ABCD}}}} = \frac{{{S_{\Delta AMN}}}}{{{S_{ABCD}}}} = \frac{{{S_{\Delta AMN}}}}{{2{S_{ABD}}}} = \frac{1}{2}\frac{{AM.AN}}{{AB.AD}}\)

Mặt khác ta có: \(4 = \frac{{AB}}{{AM}} + 2\frac{{AD}}{{AN}} \ge 2\sqrt {\frac{{AB}}{{AM}}.2\frac{{AD}}{{AN}}} \Leftrightarrow 2 \ge \frac{{AB}}{{AM}}.\frac{{AD}}{{AN}} \Leftrightarrow \frac{{AM}}{{AB}}\frac{{AN}}{{AD}} \ge \frac{1}{2}.\)

Suy ra: \(k = \frac{1}{2}\frac{{AM.AM}}{{AB.AD}} \ge \frac{1}{4}.\)

\({k_{\min }} = \frac{1}{4} \Leftrightarrow \frac{{AB}}{{AM}} = \frac{{2AD}}{{AN}} = 2 \Leftrightarrow \left\{ \begin{array}{l}AM = 2AM\\AD = AN\end{array} \right. \Leftrightarrow N \equiv D,M\) là trung điểm của \(AB.\)

Suy ra: \(\frac{{{V_1}}}{V} \le 1 - {k_{\min }} = 1 - \frac{1}{4} = \frac{3}{4}.\)

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Có tất cả bao nhiêu giá trị nguyên của tham số \(m\) để hàm số \(y = \frac{m}{3}{x^3} - 2m{x^2} + \left( {3m + 5} \right)x\) đồng biến trên \(\mathbb{R}.\) 

Xem đáp án » 03/05/2022 37,199

Câu 2:

Cho hàm số \(y = f\left( x \right)\). Đồ thị hàm số \(y = f'\left( x \right)\) như hình bên dưới

Cho hàm số y=f(x). Đồ thị hàm số y = f'(x) như hình bên dưới Hàm số g(x) = f(|x-3|) đồng biến trên các (ảnh 1)

 Hàm số \(g\left( x \right) = f\left( {\left| {3 - x} \right|} \right)\) đồng biến trên các khoảng nào trong các khoảng sau?

Xem đáp án » 05/05/2022 31,665

Câu 3:

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a,SA\) vuông góc với đáy và \(SA = a\sqrt 3 .\) Góc giữa đường thẳng \(SD\) và mặt phẳng \(\left( {ABCD} \right)\) bằng 

Xem đáp án » 03/05/2022 15,256

Câu 4:

Cho hình chóp đều \(S.ABCD\) có cạnh đáy bằng \(a\sqrt 2 ,\) cạnh bên bằng \(2a.\) Gọi \(\alpha \) là góc tạo bởi hai mặt phẳng \(\left( {SAC} \right)\) và \(\left( {SCD} \right).\) Tính \(\cos \alpha .\)

Xem đáp án » 05/05/2022 9,517

Câu 5:

Bảng biến thiên trong hình vẽ là của hàm số

Bảng biến thiên trong hình vẽ là của hàm số (ảnh 1)

Xem đáp án » 03/05/2022 4,321

Câu 6:

Cho hàm số \(y = f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}.\) Đồ thị hàm số \(y = f'\left( x \right)\) như hình bên dưới

Cho hàm số y=f(x) có đạo hàm liên tục trên R. Đồ thị hàm số y=f'(x) như hình bên dưới. Đặt g(x)=f(x)-x (ảnh 1)

Đặt \(g\left( x \right) = f\left( x \right) - x,\) khẳng định nào sau đây là đúng?

Xem đáp án » 05/05/2022 3,832

Câu 7:

Cho hàm số \(y = - {x^4} + 2{x^2}\) có đồ thị như hình vẽ.

Cho hàm số y =  - x^4 + 2x^2 có đồ thị như hình vẽ. Tìm tất cả các giá trị thực của m để phương trình  - x^4 + 2x^2 = m (ảnh 1)

Tìm tất cả các giá trị thực của \(m\) để phương trình \( - {x^4} + 2{x^2} = m\) có hai nghiệm phân biệt.

Xem đáp án » 05/05/2022 3,366