Câu hỏi:

05/05/2022 2,888 Lưu

Cho một tấm nhôm hình vuông cạnh \(6\left( {cm} \right).\) Người ta muốn cắt một hình thang như hình vẽ.

Cho một tấm nhôm hình vuông cạnh 6cm. Người ta muốn cắt một hình thang như hình vẽ. Trong đó AE=2cm  (ảnh 1)

Trong đó \(AE = 2\left( {cm} \right),AH = x\left( {cm} \right),CF = 3\left( {cm} \right),CG = y\left( {cm} \right).\) Tìm tổng \(x + y\) để diện tích hình thang \(EFGH\) đạt giá trị nhỏ nhất.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C.

Hai tam giác \(AHE\) và \(CFG\) đồng dạng suy ra: \(\frac{{CG}}{{AE}} = \frac{{CF}}{{AH}} \Leftrightarrow \frac{y}{2} = \frac{3}{x} \Leftrightarrow xy = 6.\)

Ta có: \({S_{EFGH}} = {S_{ABCD}} - {S_{AHE}} - {S_{BEF}} - {S_{CFG}} - {S_{DGH}}\)

\( = 36 - \frac{1}{2}.2x - \frac{1}{2}.4.3 - \frac{1}{2}.3.y - \frac{1}{2}.\left( {6 - x} \right).\left( {6 - y} \right)\)

\( = 36 - x - 6 - \frac{3}{2}.y - \frac{1}{2}.\left( {36 - 6\left( {x + y} \right) + xy} \right)\)

\( = 36 - x - 6 - \frac{3}{2}.y - \frac{1}{2}.\left( {36 - 6\left( {x + y} \right) + 6} \right) = 9 + 2x + \frac{3}{2}y\)

Với \(y = \frac{6}{x},\) ta có: \({S_{EFGH}} = 9 + 2x + \frac{9}{x}.\)

Xét hàm số \(f\left( x \right) = 9 + 2x + \frac{9}{x},\) trên khoảng \(\left( {0;6} \right)\) ta có: \(f'\left( x \right) = 2 - \frac{9}{{{x^2}}},\) \(f'\left( x \right) = 0 \Leftrightarrow 2 - \frac{9}{{{x^2}}} = 0 \Rightarrow x = \frac{{3\sqrt 2 }}{2}.\)

Ta có bảng biến thiên:

Cho một tấm nhôm hình vuông cạnh 6cm. Người ta muốn cắt một hình thang như hình vẽ. Trong đó AE=2cm  (ảnh 2)

Từ bảng biến thiên suy ra: \({\min _{{S_{EFGH}}}} = \mathop {\min }\limits_{\left( {0;6} \right)} f\left( x \right) = 9 + 6\sqrt 2 \) khi \(x = \frac{{3\sqrt 2 }}{2} \Rightarrow y = 2\sqrt 2 .\)

Vậy \(x + y = \frac{{7\sqrt 2 }}{2}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án A.

Tập xác định: \(D = \mathbb{R}.\)

*) Nếu \(m = 0\) ta có \(y = 5x.\) Đồ thị hàm số luôn đồng biến trên \(\mathbb{R}.\)

*) Nếu \(m \ne 0.\) Ta có: \(y' = m{x^2} - 4mx + 3m + 5.\)

Hàm số đồng biến trên \(\mathbb{R} \Leftrightarrow y' \ge 0,\forall x \in \mathbb{R}.\)

\( \Leftrightarrow m{x^2} - 4mx + 3m + 5 \ge 0,\forall x \in \mathbb{R}.\)

\( \Leftrightarrow \left\{ \begin{array}{l}\Delta ' \le 0\\a >0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}4{m^2} - m\left( {3m + 5} \right) \le 0\\m >0\end{array} \right..\)

\( \Leftrightarrow \left\{ \begin{array}{l}{m^2} - 5m \le 0\\m >0\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}0 \le m \le 5\\m >0\end{array} \right. \Leftrightarrow 0 < m \le 5\)

Kết hợp với điều kiện ta có: \(0 < m \le 5.\)

Vậy \(0 < m \le 5,m \in \mathbb{Z} \Rightarrow m \in \left\{ {0;1;2;3;4;5} \right\}.\)

Lời giải

Đáp án B.

Ta có \(y = g\left( x \right) = f\left( {\left| {x - 3} \right|} \right) \Rightarrow y' = \frac{{x - 3}}{{\left| {x - 3} \right|}}.f'\left( {\left| {x - 3} \right|} \right).\)

\(y' = 0 \Leftrightarrow \left[ \begin{array}{l}\left| {x - 3} \right| = - 1\left( L \right)\\\left| {x - 3} \right| = 1\\\left| {x - 3} \right| = 4\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 2 \vee x = 4\\x = - 1 \vee x = 7\end{array} \right.\) (Hàm số không có đạo hàm tại \(x = 3).\)

BBT

Cho hàm số y=f(x). Đồ thị hàm số y = f'(x) như hình bên dưới Hàm số g(x) = f(|x-3|) đồng biến trên các (ảnh 2)

Vậy hàm số đồng biến trên khoảng \(\left( { - 1;2} \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP