Cho một tấm nhôm hình vuông cạnh \(6\left( {cm} \right).\) Người ta muốn cắt một hình thang như hình vẽ.
Trong đó \(AE = 2\left( {cm} \right),AH = x\left( {cm} \right),CF = 3\left( {cm} \right),CG = y\left( {cm} \right).\) Tìm tổng \(x + y\) để diện tích hình thang \(EFGH\) đạt giá trị nhỏ nhất.
Quảng cáo
Trả lời:
Đáp án C.
Hai tam giác \(AHE\) và \(CFG\) đồng dạng suy ra: \(\frac{{CG}}{{AE}} = \frac{{CF}}{{AH}} \Leftrightarrow \frac{y}{2} = \frac{3}{x} \Leftrightarrow xy = 6.\)
Ta có: \({S_{EFGH}} = {S_{ABCD}} - {S_{AHE}} - {S_{BEF}} - {S_{CFG}} - {S_{DGH}}\)
\( = 36 - \frac{1}{2}.2x - \frac{1}{2}.4.3 - \frac{1}{2}.3.y - \frac{1}{2}.\left( {6 - x} \right).\left( {6 - y} \right)\)
\( = 36 - x - 6 - \frac{3}{2}.y - \frac{1}{2}.\left( {36 - 6\left( {x + y} \right) + xy} \right)\)
\( = 36 - x - 6 - \frac{3}{2}.y - \frac{1}{2}.\left( {36 - 6\left( {x + y} \right) + 6} \right) = 9 + 2x + \frac{3}{2}y\)
Với \(y = \frac{6}{x},\) ta có: \({S_{EFGH}} = 9 + 2x + \frac{9}{x}.\)
Xét hàm số \(f\left( x \right) = 9 + 2x + \frac{9}{x},\) trên khoảng \(\left( {0;6} \right)\) ta có: \(f'\left( x \right) = 2 - \frac{9}{{{x^2}}},\) \(f'\left( x \right) = 0 \Leftrightarrow 2 - \frac{9}{{{x^2}}} = 0 \Rightarrow x = \frac{{3\sqrt 2 }}{2}.\)
Ta có bảng biến thiên:

Từ bảng biến thiên suy ra: \({\min _{{S_{EFGH}}}} = \mathop {\min }\limits_{\left( {0;6} \right)} f\left( x \right) = 9 + 6\sqrt 2 \) khi \(x = \frac{{3\sqrt 2 }}{2} \Rightarrow y = 2\sqrt 2 .\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án A.
Tập xác định: \(D = \mathbb{R}.\)
*) Nếu \(m = 0\) ta có \(y = 5x.\) Đồ thị hàm số luôn đồng biến trên \(\mathbb{R}.\)
*) Nếu \(m \ne 0.\) Ta có: \(y' = m{x^2} - 4mx + 3m + 5.\)
Hàm số đồng biến trên \(\mathbb{R} \Leftrightarrow y' \ge 0,\forall x \in \mathbb{R}.\)
\( \Leftrightarrow m{x^2} - 4mx + 3m + 5 \ge 0,\forall x \in \mathbb{R}.\)
\( \Leftrightarrow \left\{ \begin{array}{l}\Delta ' \le 0\\a >0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}4{m^2} - m\left( {3m + 5} \right) \le 0\\m >0\end{array} \right..\)
\( \Leftrightarrow \left\{ \begin{array}{l}{m^2} - 5m \le 0\\m >0\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}0 \le m \le 5\\m >0\end{array} \right. \Leftrightarrow 0 < m \le 5\)
Kết hợp với điều kiện ta có: \(0 < m \le 5.\)
Vậy \(0 < m \le 5,m \in \mathbb{Z} \Rightarrow m \in \left\{ {0;1;2;3;4;5} \right\}.\)
Lời giải
Đáp án B.
Ta có \(y = g\left( x \right) = f\left( {\left| {x - 3} \right|} \right) \Rightarrow y' = \frac{{x - 3}}{{\left| {x - 3} \right|}}.f'\left( {\left| {x - 3} \right|} \right).\)
\(y' = 0 \Leftrightarrow \left[ \begin{array}{l}\left| {x - 3} \right| = - 1\left( L \right)\\\left| {x - 3} \right| = 1\\\left| {x - 3} \right| = 4\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 2 \vee x = 4\\x = - 1 \vee x = 7\end{array} \right.\) (Hàm số không có đạo hàm tại \(x = 3).\)
BBT

Vậy hàm số đồng biến trên khoảng \(\left( { - 1;2} \right).\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.