Câu hỏi:
05/05/2022 484Có bao nhiêu giá trị nguyên của tham số \(m\) để đồ thị hàm số \(y = \frac{{1 + \sqrt {x + 1} }}{{\sqrt {{x^2} - \left( {1 - m} \right)x + 2m} }}\) có hai tiệm cận đứng?
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Đáp án A.
ĐK: \(x \ge - 1\) và \({x^2} - \left( {1 - m} \right)x + 2m >0\)
Xét phương trình \(1 + \sqrt {x + 1} = 0\) vô nghiệm.
Xét phương trình \({x^2} - \left( {1 - m} \right)x + 2m = 0\left( * \right).\) Để đồ thị hàm số có hai TCĐ thì phương trình có 2 nghiệm phân biệt thỏa mãn ĐK \(x \ge - 1.\)
\( \Leftrightarrow \Delta >0 \Leftrightarrow {\left( {1 - m} \right)^2} - 8m >0 \Leftrightarrow {m^2} - 10m + 1 >0 \Leftrightarrow \left[ \begin{array}{l}m >5 + 2\sqrt 6 \\m < 5 - 2\sqrt 6 \end{array} \right..\)
Khi đó gọi hai nghiệm của phương trình là \({x_1} >{x_2}\) ta có:
\({x_1} >{x_2} \ge - 1 \Leftrightarrow \left\{ \begin{array}{l}af\left( { - 1} \right) \ge 0\\\frac{S}{2} >- 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m + 2 \ge 0\\2 - m >- 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \ge - 2\\m < 4\end{array} \right. \Leftrightarrow - 2 \le m < 4\)
Kết hợp điều kiện ta có: \(m \in \left[ { - 2;5 - 2\sqrt 6 } \right)\mathop \Rightarrow \limits^{m \in \mathbb{Z}} m \in \left\{ { - 2; - 1;0} \right\}.\)
Thử lại:
Với \(m = - 2 \Rightarrow {x^2} - 3x - 4 >0 \Leftrightarrow \left[ \begin{array}{l}x >4\\x < - 1\end{array} \right. \Rightarrow TXD:D = \left( {4; + \infty } \right)\)
Khi đó hàm số có dạng \(y = \frac{{1 + \sqrt {x + 1} }}{{\sqrt {{x^2} - 3x - 4} }}\) có 1 tiệm cận đứng \(x = 4 \Rightarrow \) Loại.
Với \(m = - 1 \Rightarrow {x^2} - 2x - 2 >0 \Leftrightarrow \left[ \begin{array}{l}x >1 + \sqrt 3 \\x < 1 - \sqrt 3 \end{array} \right. \Rightarrow TXD:D = \left[ { - 1;1 - \sqrt 3 } \right) \cup \left( {1 + \sqrt 3 ; + \infty } \right)\)
Khi đó hàm số có dạng \(y = \frac{{1 + \sqrt {x + 1} }}{{\sqrt {{x^2} - 2x - 2} }}\) có 2 tiệm cận đứng \(x = 1 \pm \sqrt 3 \Rightarrow TM.\)
Khi \(m = 0 \Rightarrow {x^2} - x >0 \Leftrightarrow \left[ \begin{array}{l}x >1\\x < 0\end{array} \right. \Rightarrow TXD:D = \left[ { - 1;1} \right) \cup \left( {0; + \infty } \right)\)
Khi đó hàm số có dạng \(y = \frac{{1 + \sqrt {x + 1} }}{{\sqrt {{x^2} - x} }}\) có 2 tiệm cận đứng \(x = 0;x = 1 \Rightarrow TM.\)
Vậy \(m \in \left\{ { - 1;0} \right\}.\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Có tất cả bao nhiêu giá trị nguyên của tham số \(m\) để hàm số \(y = \frac{m}{3}{x^3} - 2m{x^2} + \left( {3m + 5} \right)x\) đồng biến trên \(\mathbb{R}.\)
Câu 2:
Cho hàm số \(y = f\left( x \right)\). Đồ thị hàm số \(y = f'\left( x \right)\) như hình bên dưới
Hàm số \(g\left( x \right) = f\left( {\left| {3 - x} \right|} \right)\) đồng biến trên các khoảng nào trong các khoảng sau?
Câu 3:
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a,SA\) vuông góc với đáy và \(SA = a\sqrt 3 .\) Góc giữa đường thẳng \(SD\) và mặt phẳng \(\left( {ABCD} \right)\) bằng
Câu 4:
Cho hình chóp đều \(S.ABCD\) có cạnh đáy bằng \(a\sqrt 2 ,\) cạnh bên bằng \(2a.\) Gọi \(\alpha \) là góc tạo bởi hai mặt phẳng \(\left( {SAC} \right)\) và \(\left( {SCD} \right).\) Tính \(\cos \alpha .\)
Câu 6:
Cho hàm số \(y = f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}.\) Đồ thị hàm số \(y = f'\left( x \right)\) như hình bên dưới
Đặt \(g\left( x \right) = f\left( x \right) - x,\) khẳng định nào sau đây là đúng?
Câu 7:
Cho hàm số \(y = - {x^4} + 2{x^2}\) có đồ thị như hình vẽ.
Tìm tất cả các giá trị thực của \(m\) để phương trình \( - {x^4} + 2{x^2} = m\) có hai nghiệm phân biệt.
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
50 bài tập Nguyên hàm, tích phân và ứng dụng có lời giải
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 1)
50 bài tập Hình học không gian có lời giải
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
45 bài tập Xác suất có lời giải
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 2)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận