Câu hỏi:
05/05/2022 3,547Cho hàm số \(f\left( x \right)\) liên tục trên \(\left( {0; + \infty } \right).\) Biết \(\frac{1}{{{x^2}}}\) là một nguyên hàm của hàm số \(y = f'\left( x \right)\ln x\) và \(f\left( 2 \right) = \frac{1}{{\ln 2}}.\) Khi đó, \(\int\limits_1^2 {\frac{{f\left( x \right)}}{x}dx} \) bằng
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án D.
Vì \(\frac{1}{{{x^2}}}\) là một nguyên hàm của hàm số \(y = f'\left( x \right)\ln x,\) nên \({\left( {\frac{1}{{{x^2}}}} \right)^'} = f'\left( x \right)\ln x \Leftrightarrow - \frac{2}{{{x^3}}} = f'\left( x \right)\ln x\)
Đặt \(\left\{ \begin{array}{l}u = f\left( x \right)\\dv = \frac{1}{x}dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = f'\left( x \right)dx\\v = \ln x\end{array} \right..\)
Khi đó: \(\int\limits_1^2 {\frac{{f\left( x \right)}}{x}dx} = f\left( x \right).\ln \left( x \right)\left| \begin{array}{l}2\\1\end{array} \right. - \int\limits_1^2 {f'\left( x \right)\ln xdx} = f\left( 2 \right).\ln \left( 2 \right) + \int\limits_1^2 {\frac{2}{{{x^3}}}dx} = \frac{1}{{\ln 2}}.\ln 2 - \frac{1}{{{x^2}}}\left| \begin{array}{l}2\\1\end{array} \right.\)
\( = 1 - \left( {\frac{1}{{{2^2}}} - 1} \right) = \frac{7}{4}.\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số \(f\left( x \right).\) Bảng biến thiên của hàm số \(f'\left( x \right)\) như sau:
Số điểm cực trị của hàm số \(y = f\left( {{x^2} - 2x} \right)\) là:
Câu 2:
Cho số phức \(z\) thỏa \(\left( {2 + i} \right)z - 4\left( {\overline z - i} \right) = - 8 + 19i.\) Mô đun của \(z\) bằng
Câu 3:
Hàm số \(y = \frac{{x - {m^2}}}{{x - 4}}\) đồng biến trên các khoảng \(\left( { - \infty ;4} \right)\) và \(\left( {4; + \infty } \right)\) khi
Câu 4:
Cho đồ thị hàm số \(f\left( x \right) = a{x^4} + b{x^2} + c\) như hình vẽ bên. Khẳng định nào sau đây là đúng
Câu 5:
Cho tích phân: \(I = \int\limits_1^e {\frac{{\sqrt {1 - \ln x} }}{x}dx} .\) Đặt \(u = \sqrt {1 - \ln x} .\) Khi đó \(I\) bằng
Câu 6:
Trong không gian \(Oxyz,\) cho điểm \(A\left( {1;2;5} \right)\) và mặt phẳng \(\left( P \right):x - 2y + z - 1 = 0.\) Phương trình đường thẳng qua \(A\) vuông góc với \(\left( P \right)\) là:
về câu hỏi!