Câu hỏi:
05/05/2022 59,533Cho hàm số \(f\left( x \right).\) Bảng biến thiên của hàm số \(f'\left( x \right)\) như sau:
Số điểm cực trị của hàm số \(y = f\left( {{x^2} - 2x} \right)\) là:
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án A.
Xét \(y = f\left( {{x^2} - 2x} \right) \Rightarrow y' = \left( {2x - 2} \right).f'\left( {{x^2} - 2x} \right)\)
\(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\f'\left( {{x^2} - 2x} \right) = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 1\\{x^2} - 2x = {x_1} \in \left( { - \infty ; - 1} \right)\\{x^2} - 2x = {x_2} \in \left( { - 1;0} \right)\\{x^2} - 2x = {x_3} \in \left( {0;1} \right)\\{x^2} - 2x = {x_4} \in \left( {1; + \infty } \right)\end{array} \right.\)
Trường hợp 1: \({x^2} - 2x = {x_1} \in \left( { - \infty ; - 1} \right) \Leftrightarrow {x^2} - 2x - {x_1} = 0.\)
Ta có \(\Delta ' = 1 - 1.\left( { - {x_1}} \right) = 1 + {x_1} < 0,\forall {x_1} \in \left( { - \infty ; - 1} \right)\) nên phương trình vô nghiệm. Suy ra trường hợp này không có điểm cực trị.
Trường hợp 2: \({x^3} - 2x = {x_2} \in \left( { - 1;0} \right) \Leftrightarrow {x^2} - 2x - {x_2} = 0.\)
Ta có \(\Delta ' = 1 - 1.\left( { - {x_2}} \right) = 1 + {x_2} >0,\forall {x_2} \in \left( { - 1;0} \right)\) nên phương trình luôn có hai nghiệm phân biệt. Suy ra trường hợp này có hai điểm cực trị.
Trường hợp 3: \({x^2} - 2x = {x_3} \in \left( {0;1} \right).\) Xét thấy hệ số \(a\) và \(c\) trong phương trình luôn trái dấu nên phương trình luôn có hai nghiệm phân biệt. Suy ra trường hợp này có hai điểm cực trị.
Trường hợp 4: \({x^2} - 2x = {x_4} \in \left( {1; + \infty } \right).\) Xét thấy hệ số \(a\) và \(c\) trong phương trình luôn trái dấu nên phương trình luôn có hai nghiệm phân biệt. Suy ra trường hợp này có hai điểm cực trị.
Mặt khác, các hệ số trong các phương trình ở trường hợp 2, 3, 4 vừa xét đều khác nhau hệ số \(c\) nên các nghiệm của phương trình này đều khác nhau và đều khác 1.
Vậy hàm số \(y = f\left( {{x^2} - 2x} \right)\) có 7 điểm cực trị. Ta chọn đáp án A.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho số phức \(z\) thỏa \(\left( {2 + i} \right)z - 4\left( {\overline z - i} \right) = - 8 + 19i.\) Mô đun của \(z\) bằng
Câu 2:
Hàm số \(y = \frac{{x - {m^2}}}{{x - 4}}\) đồng biến trên các khoảng \(\left( { - \infty ;4} \right)\) và \(\left( {4; + \infty } \right)\) khi
Câu 3:
Cho đồ thị hàm số \(f\left( x \right) = a{x^4} + b{x^2} + c\) như hình vẽ bên. Khẳng định nào sau đây là đúng
Câu 4:
Cho tích phân: \(I = \int\limits_1^e {\frac{{\sqrt {1 - \ln x} }}{x}dx} .\) Đặt \(u = \sqrt {1 - \ln x} .\) Khi đó \(I\) bằng
Câu 5:
Cho hàm số \(f\left( x \right)\) liên tục trên \(\left( {0; + \infty } \right).\) Biết \(\frac{1}{{{x^2}}}\) là một nguyên hàm của hàm số \(y = f'\left( x \right)\ln x\) và \(f\left( 2 \right) = \frac{1}{{\ln 2}}.\) Khi đó, \(\int\limits_1^2 {\frac{{f\left( x \right)}}{x}dx} \) bằng
Câu 6:
Trong không gian \(Oxyz,\) cho điểm \(A\left( {1;2;5} \right)\) và mặt phẳng \(\left( P \right):x - 2y + z - 1 = 0.\) Phương trình đường thẳng qua \(A\) vuông góc với \(\left( P \right)\) là:
về câu hỏi!