Câu hỏi:

08/05/2022 2,052 Lưu

Cho hàm số bậc ba \(y = f\left( x \right)\) có đồ thị như hình vẽ. Số nghiệm của phương trình \(f\left( {2020x - 1} \right) = 1\) là

Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ. Số nghiệm của phương trình f(2020x-1) = 1 là (ảnh 1)

A.0.

B. \(1.\)

C. \(2.\)

D. \(3.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án D.

Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ. Số nghiệm của phương trình f(2020x-1) = 1 là (ảnh 2)

Dựa vào đồ thị ta thấy phương trình \(f\left( {2020x - 1} \right) = 1 \Leftrightarrow \left[ \begin{array}{l}2020x - 1 = a\left( {a < 0} \right)\\2020x - 1 = b\left( {0 < b < 1} \right)\\2020x - 1 = c\left( {c >2} \right)\end{array} \right.\)

\( \Leftrightarrow \left[ \begin{array}{l}x = \frac{{1 + a}}{{2020}}\\x = \frac{{1 + b}}{{2020}}\\x = \frac{{1 + c}}{{2020}}\end{array} \right..\) Vậy phương trình \(f\left( {2020x - 1} \right) = 1\) có ba nghiệm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp ánC.

Mỗi tập hợp con gồm 2 phần tử của \(A\) tập hợp là một tổ hợp chập 2 của 6 phần tử. Do đó số tập hợp con gồm hai phần tử của tập hợp \(A\) là \(C_6^2.\)

Lời giải

Đáp án C.

Ta có \(y' = 3{x^2} - 3x,y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0 \in \left[ {0;2} \right]\\x = 1 \in \left[ {0;2} \right]\end{array} \right.\)

\(y\left( 0 \right) = 2,y\left( 2 \right) = 4,y\left( 1 \right) = 0,\) vậy \(M = 4;m = 0\), do đó \(M + m = 4.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP