Câu hỏi:

14/06/2022 2,550 Lưu

Cho hàm số \(f\left( x \right) = \ln \frac{{2020x}}{{x + 1}}.\) Tính tổng S=f'1+f'2+...+f'2020?

A.\(S = \ln 2020.\)

B.\(S = 2020.\)

C.\(S = \frac{{2020}}{{2021}}.\)

D.\(S = 1.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp ánC.

\(f\left( x \right) = \ln \frac{{2020x}}{{x + 1}} \Rightarrow f'\left( x \right) = \frac{1}{{x\left( {x + 1} \right)}} = \frac{1}{x} - \frac{1}{{x + 1}}\)

Khi đó: \(S = f'\left( 1 \right) + f'\left( 2 \right) + ... + f'\left( {2020} \right) = \sum\limits_{k = 1}^{2020} {\left( {\frac{1}{k} - \frac{1}{{k + 1}}} \right) = 1 - \frac{1}{{2021}} = \frac{{2020}}{{2021}}.} \)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp ánC.

Mỗi tập hợp con gồm 2 phần tử của \(A\) tập hợp là một tổ hợp chập 2 của 6 phần tử. Do đó số tập hợp con gồm hai phần tử của tập hợp \(A\) là \(C_6^2.\)

Lời giải

Đáp án C.

Ta có \(y' = 3{x^2} - 3x,y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0 \in \left[ {0;2} \right]\\x = 1 \in \left[ {0;2} \right]\end{array} \right.\)

\(y\left( 0 \right) = 2,y\left( 2 \right) = 4,y\left( 1 \right) = 0,\) vậy \(M = 4;m = 0\), do đó \(M + m = 4.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP