Đồ thị hàm số \(y = \frac{{\sqrt {{x^2} - 4} }}{{{x^2} - 5\left| x \right| + 4}}\) có bao nhiêu đường tiệm cận?
Câu hỏi trong đề: [Năm 2022] Đề thi thử môn Toán THPT Quốc gia có đáp án (30 đề) !!
Quảng cáo
Trả lời:
Đáp án C.
Hàm số xác định \( \Leftrightarrow \left\{ \begin{array}{l}{x^2} - 4 \ge 0\\{x^2} - 5\left| x \right| + 4 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}x \le - 2\\x \ge 2\end{array} \right.\\x \ne \pm 4\end{array} \right..\)
Tập xác định của hàm số là: \(D = \left( { - \infty ; - 2} \right] \cup \left[ {2; + \infty } \right)\backslash \left\{ { - 4;4} \right\}.\)
Ta có: \(\mathop {\lim }\limits_{x \to \pm \infty } y = 0 \Rightarrow \) đường thẳng \(y = 0\) là đường tiệm cận ngang của đồ thị hàm số.
\(\mathop {\lim }\limits_{x \to {4^ + }} y = + \infty \Rightarrow \) đường thẳng \(x = 4\) là đường tiệm cận đứng của đồ thị hàm số.
\(\mathop {\lim }\limits_{x \to - {4^ - }} y = + \infty \Rightarrow \) đường thẳng \(x = - 4\) là đường tiệm cận đứng của đồ thị hàm số.
Vậy đồ thị hàm số có 3 đường tiệm cận.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp ánC.
Mỗi tập hợp con gồm 2 phần tử của \(A\) tập hợp là một tổ hợp chập 2 của 6 phần tử. Do đó số tập hợp con gồm hai phần tử của tập hợp \(A\) là \(C_6^2.\)
Lời giải
Đáp án B.

Vì \(\left\{ \begin{array}{l}\left( {SAB} \right) \bot \left( {ABCD} \right)\\\left( {SAD} \right) \bot \left( {ABCD} \right)\\\left( {SAB} \right) \cap \left( {SAD} \right) = SA\end{array} \right. \Rightarrow SA \bot \left( {ABCD} \right)\)
Ta có: \(AB = \sqrt {B{D^2} - A{D^2}} = \sqrt {{{\left( {a\sqrt 5 } \right)}^2} - {{\left( {2a} \right)}^2}} = a\)
\(SA = AB\tan {30^0} = \frac{{a\sqrt 3 }}{3}\)
\({S_{ABCD}} = \frac{{\left( {AD + BC} \right).AB}}{2} = \frac{{\left( {2a + a} \right).a}}{2} = \frac{{3{a^2}}}{2}\)
Thể tích khối chóp \(S.ABCD\) là:
\(V = \frac{1}{3}SA.{S_{ABCD}} = \frac{1}{3}.\frac{{a\sqrt 3 }}{3}.\frac{{3{a^2}}}{2} = \frac{{{a^3}\sqrt 3 }}{6}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.