Câu hỏi:

08/05/2022 2,016 Lưu

Đồ thị hàm số \(y = \frac{{\sqrt {{x^2} - 4} }}{{{x^2} - 5\left| x \right| + 4}}\) có bao nhiêu đường tiệm cận?

A.\(4.\)

B. \(1.\)

C. \(3.\)

D. \(2.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án C.

Hàm số xác định \( \Leftrightarrow \left\{ \begin{array}{l}{x^2} - 4 \ge 0\\{x^2} - 5\left| x \right| + 4 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}x \le - 2\\x \ge 2\end{array} \right.\\x \ne \pm 4\end{array} \right..\)

Tập xác định của hàm số là: \(D = \left( { - \infty ; - 2} \right] \cup \left[ {2; + \infty } \right)\backslash \left\{ { - 4;4} \right\}.\)

Ta có: \(\mathop {\lim }\limits_{x \to \pm \infty } y = 0 \Rightarrow \) đường thẳng \(y = 0\) là đường tiệm cận ngang của đồ thị hàm số.

\(\mathop {\lim }\limits_{x \to {4^ + }} y = + \infty \Rightarrow \) đường thẳng \(x = 4\) là đường tiệm cận đứng của đồ thị hàm số.

\(\mathop {\lim }\limits_{x \to - {4^ - }} y = + \infty \Rightarrow \) đường thẳng \(x = - 4\) là đường tiệm cận đứng của đồ thị hàm số.

Vậy đồ thị hàm số có 3 đường tiệm cận.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp ánC.

Mỗi tập hợp con gồm 2 phần tử của \(A\) tập hợp là một tổ hợp chập 2 của 6 phần tử. Do đó số tập hợp con gồm hai phần tử của tập hợp \(A\) là \(C_6^2.\)

Lời giải

Đáp án C.

Ta có \(y' = 3{x^2} - 3x,y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0 \in \left[ {0;2} \right]\\x = 1 \in \left[ {0;2} \right]\end{array} \right.\)

\(y\left( 0 \right) = 2,y\left( 2 \right) = 4,y\left( 1 \right) = 0,\) vậy \(M = 4;m = 0\), do đó \(M + m = 4.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP