Câu hỏi:

08/05/2022 275 Lưu

Cho khối chóp \(S.ABC\) có \[\widehat {ASB} = \widehat {BSC} = \widehat {CSA} = {60^ \circ },SA = a,SB = 2a,SC = 4a.\] Tính thể tích khối chóp \(S.ABC\) theo\(a?\) 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A.

Cho khối chóp S.ABC có góc ASB = góc BSC = góc CSA = 60^0, SA = a, SB = 2a, SC = 4a. Tính thể tích khối chóp S.ABC (ảnh 1)

Lấy trên \(SB,SC\) hai điểm \(E,F\) sao cho \(SE = SF = SA = a.\) Do \(\widehat {ASB} = \widehat {BSC} = \widehat {CSA} = {60^0}\) nên tứ diện \(SAEF\) là tứ diện đều có cạnh bằng \(a.\)

Gọi \(H\) là chân đường cao hạ từ \(S\) xuống mặt phẳng \(\left( {AEF} \right).\) Thể tích khối tứ diện \(SAEF\) bằng:

\({V_{SAEF}} = \frac{1}{3}SH.{S_{AEF}} = \frac{1}{3}.\sqrt {S{A^2} - A{H^2}} .{S_{AEF}} = \frac{1}{3}.\sqrt {{a^2} - \frac{{{a^2}}}{3}} .\frac{{{a^2}\sqrt 3 }}{4} = \frac{{{a^3}\sqrt 2 }}{{12}}\)

Lại có: \(\frac{{{V_{SAEF}}}}{{{V_{SABC}}}} = \frac{{SE}}{{SB}}.\frac{{SF}}{{SC}} = \frac{1}{8} \Rightarrow {V_{SABC}} = 8.{V_{SAEF}} = \frac{{2{a^3}\sqrt 2 }}{3}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp ánC.

Mỗi tập hợp con gồm 2 phần tử của \(A\) tập hợp là một tổ hợp chập 2 của 6 phần tử. Do đó số tập hợp con gồm hai phần tử của tập hợp \(A\) là \(C_6^2.\)

Lời giải

Đáp án B.

 Cho khối chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B. Hai mặt phẳng (SAB) và (SAD) cùng vuông góc với đáy (ảnh 1)

Vì \(\left\{ \begin{array}{l}\left( {SAB} \right) \bot \left( {ABCD} \right)\\\left( {SAD} \right) \bot \left( {ABCD} \right)\\\left( {SAB} \right) \cap \left( {SAD} \right) = SA\end{array} \right. \Rightarrow SA \bot \left( {ABCD} \right)\)

Ta có: \(AB = \sqrt {B{D^2} - A{D^2}} = \sqrt {{{\left( {a\sqrt 5 } \right)}^2} - {{\left( {2a} \right)}^2}} = a\)

\(SA = AB\tan {30^0} = \frac{{a\sqrt 3 }}{3}\)

\({S_{ABCD}} = \frac{{\left( {AD + BC} \right).AB}}{2} = \frac{{\left( {2a + a} \right).a}}{2} = \frac{{3{a^2}}}{2}\)

Thể tích khối chóp \(S.ABCD\) là:

\(V = \frac{1}{3}SA.{S_{ABCD}} = \frac{1}{3}.\frac{{a\sqrt 3 }}{3}.\frac{{3{a^2}}}{2} = \frac{{{a^3}\sqrt 3 }}{6}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP