Câu hỏi:

08/05/2022 1,017

Cho hàm số \(f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) và hàm \(f'\left( x \right)\) có đồ thị như hình vẽ bên. Hàm số \(g\left( x \right) = \frac{1}{2}f\left( {1 - x} \right) + \frac{{{x^2}}}{2} - x\) nghịch biến trên khoảng nào dưới đây?

Cho hàm số f(x) có đạo hàm trên R và hàm f'(x) có đồ thị như hình vẽ bên. Hàm số g(x) = 1/2f(1-x)+x^2/2 - x nghịch biến (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B.

Với \(t = 1 - x,\) ta có hàm số \(y = f\left( t \right)\) có đồ thị như hình vẽ.

Cho hàm số f(x) có đạo hàm trên R và hàm f'(x) có đồ thị như hình vẽ bên. Hàm số g(x) = 1/2f(1-x)+x^2/2 - x nghịch biến (ảnh 2)

Có:

\(y = g\left( x \right) = f\left( {1 - x} \right) + \frac{{{x^2}}}{2} - x\)

\(y'\left( x \right) = - f'\left( {1 - x} \right) + x - 1 = - f'\left( t \right) - t\)

Hàm số nghịch biến khi và chỉ khi:

\( - f'\left( t \right) - t < 0 \Leftrightarrow f'\left( t \right) >- t\)</>

Dựa vào đồ thị hàm số xác định được

\(f'\left( t \right) >- t \Leftrightarrow \left[ \begin{array}{l}t < - 3\\1 < t < 3\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}1 - x < - 3\\1 < 1 - x < 3\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x >4\\ - 2 < x < 0\end{array} \right.\)

Vậy chỉ có đáp án B thỏa mãn.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp ánC.

Mỗi tập hợp con gồm 2 phần tử của \(A\) tập hợp là một tổ hợp chập 2 của 6 phần tử. Do đó số tập hợp con gồm hai phần tử của tập hợp \(A\) là \(C_6^2.\)

Lời giải

Đáp án B.

 Cho khối chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B. Hai mặt phẳng (SAB) và (SAD) cùng vuông góc với đáy (ảnh 1)

Vì \(\left\{ \begin{array}{l}\left( {SAB} \right) \bot \left( {ABCD} \right)\\\left( {SAD} \right) \bot \left( {ABCD} \right)\\\left( {SAB} \right) \cap \left( {SAD} \right) = SA\end{array} \right. \Rightarrow SA \bot \left( {ABCD} \right)\)

Ta có: \(AB = \sqrt {B{D^2} - A{D^2}} = \sqrt {{{\left( {a\sqrt 5 } \right)}^2} - {{\left( {2a} \right)}^2}} = a\)

\(SA = AB\tan {30^0} = \frac{{a\sqrt 3 }}{3}\)

\({S_{ABCD}} = \frac{{\left( {AD + BC} \right).AB}}{2} = \frac{{\left( {2a + a} \right).a}}{2} = \frac{{3{a^2}}}{2}\)

Thể tích khối chóp \(S.ABCD\) là:

\(V = \frac{1}{3}SA.{S_{ABCD}} = \frac{1}{3}.\frac{{a\sqrt 3 }}{3}.\frac{{3{a^2}}}{2} = \frac{{{a^3}\sqrt 3 }}{6}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay