Câu hỏi:

08/05/2022 2,997

Cho hàm số \(y = {x^3} - 2\left( {m + 1} \right){x^2} + \left( {5m + 1} \right)x - 2m - 2\) có đồ thị \(\left( {{C_m}} \right)\) với \(m\) là tham số. Tập \(S\) là tập các giá trị nguyên của \(m\left( {m \in \left( { - 2021;2021} \right)} \right)\) để \(\left( {{C_m}} \right)\) cắt trục hoành tại 3 điểm phân biệt \(A\left( {2;0} \right);B,C\) sao cho trong hai điểm \(B,C\) có một điểm nằm trong và một điểm nằm ngoài đường tròn có phương trình \({x^2} + {y^2} = 1.\) Tính số phần tử của \(S?\)

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D.

* Phương trình hoành độ giao điểm của đồ thị và \(Ox:{x^3} - 2\left( {m + 1} \right){x^2} + \left( {5m + 1} \right)x - 2m - 2 = 0\)

\( \Leftrightarrow \left[ \begin{array}{l}x = 2\\{x^2} - 2mx + m + 1 = 0\left( * \right)\end{array} \right.\)

* Để đồ thị cắt \(Ox\) tại 3 điểm phân biệt \(\left( * \right)\) có hai nghiệm phân biệt khác 2

\( \Leftrightarrow \left\{ \begin{array}{l}\Delta = {m^2} - m - 1 >0\\5 - 3m \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}m >\frac{{1 + \sqrt 5 }}{2}\\m < \frac{{1 - \sqrt 5 }}{2}\end{array} \right.\\m \ne \frac{5}{3}\end{array} \right.{\rm{ }}\left( 1 \right)\)

* Gọi \(B\left( {{x_1};0} \right),C\left( {{x_2};0} \right)\), trong đó \({x_1};{x_2}\) là hai nghiệm của \(\left( * \right).\)

\(B,C\) có một điểm nằm trong và một điểm nằm ngoài đường tròn có phương trình \({x^2} + {y^2} = 1\)

\( \Leftrightarrow \left( {x_1^2 - 1} \right)\left( {x_2^2 - 1} \right) < 0 \Leftrightarrow {\left( {{x_1}{x_2}} \right)^2} - {\left( {{x_1} + {x_2}} \right)^2} + 2{x_1}{x_2} + 1 < 0\)

\( \Leftrightarrow {\left( {m + 1} \right)^2} - 4{m^2} + 2m + 3 < 0 \Leftrightarrow - 3{m^2} + 4m + 4 < 0 \Leftrightarrow \left[ \begin{array}{l}m >2\\m < - \frac{2}{3}\end{array} \right.\left( 2 \right)\)

Kết hợp (1), (2) suy ra \(\left[ \begin{array}{l}m >2\\m < - \frac{2}{3}\end{array} \right.\)

Mà \(m \in \left( { - 2021;2021} \right) \cap \mathbb{Z}\) suy ra \(m \in \left\{ { - 2020; - 2019;...; - 1;3;...2020} \right\}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tập hợp \(A = \left\{ {0;1;2;3;4;5} \right\}.\) Số tập hợp con gồm hai phần tử của tập hợp \(A\) là

Xem đáp án » 08/05/2022 42,930

Câu 2:

Cho khối chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang vuông tại \(A\) và \(B\). Hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SAD} \right)\) cùng vuông góc với đáy. Biết \(AD = 2BC = 2a\) và \(BD = a\sqrt 5 .\) Tính thể tích khối chóp \(S.ABCD\) biết rằng góc giữa \(SB\) và \(\left( {ABCD} \right)\) bằng \({30^0}\)? 

Xem đáp án » 08/05/2022 5,471

Câu 3:

Cho hình nón có chiều cao bằng 4 và bán kính đáy bằng 3. Cắt hình nón đã cho bởi mặt phẳng đi qua đỉnh và cách tâm của đáy một khoảng bằng 2, ta được thiết diện có diện tích bằng

Xem đáp án » 08/05/2022 5,238

Câu 4:

Số giao điểm của đồ thị hàm số \(y = {x^4} - 4{x^2} + 1\) với trục hoành là

Xem đáp án » 08/05/2022 4,703

Câu 5:

Gọi \(M\) và \(m\) lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = {x^3} - 3x + 2\) trên đoạn \(\left[ {0;2} \right].\) Khi đó tổng \(M + m\) bằng

Xem đáp án » 08/05/2022 3,713

Câu 6:

Đáy của lăng trụ đứng tam giác ABC.A'B'C' là tam giác\(ABC\) vuông cân tại \(A\) có cạnh \(BC = a\sqrt 2 \) và biết A'B=3a. Tính thể tích khối lăng trụ.

Xem đáp án » 14/06/2022 2,722

Bình luận


Bình luận