Câu hỏi:

08/05/2022 3,488 Lưu

Cho hàm số \(y = {x^3} - 2\left( {m + 1} \right){x^2} + \left( {5m + 1} \right)x - 2m - 2\) có đồ thị \(\left( {{C_m}} \right)\) với \(m\) là tham số. Tập \(S\) là tập các giá trị nguyên của \(m\left( {m \in \left( { - 2021;2021} \right)} \right)\) để \(\left( {{C_m}} \right)\) cắt trục hoành tại 3 điểm phân biệt \(A\left( {2;0} \right);B,C\) sao cho trong hai điểm \(B,C\) có một điểm nằm trong và một điểm nằm ngoài đường tròn có phương trình \({x^2} + {y^2} = 1.\) Tính số phần tử của \(S?\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D.

* Phương trình hoành độ giao điểm của đồ thị và \(Ox:{x^3} - 2\left( {m + 1} \right){x^2} + \left( {5m + 1} \right)x - 2m - 2 = 0\)

\( \Leftrightarrow \left[ \begin{array}{l}x = 2\\{x^2} - 2mx + m + 1 = 0\left( * \right)\end{array} \right.\)

* Để đồ thị cắt \(Ox\) tại 3 điểm phân biệt \(\left( * \right)\) có hai nghiệm phân biệt khác 2

\( \Leftrightarrow \left\{ \begin{array}{l}\Delta = {m^2} - m - 1 >0\\5 - 3m \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}m >\frac{{1 + \sqrt 5 }}{2}\\m < \frac{{1 - \sqrt 5 }}{2}\end{array} \right.\\m \ne \frac{5}{3}\end{array} \right.{\rm{ }}\left( 1 \right)\)

* Gọi \(B\left( {{x_1};0} \right),C\left( {{x_2};0} \right)\), trong đó \({x_1};{x_2}\) là hai nghiệm của \(\left( * \right).\)

\(B,C\) có một điểm nằm trong và một điểm nằm ngoài đường tròn có phương trình \({x^2} + {y^2} = 1\)

\( \Leftrightarrow \left( {x_1^2 - 1} \right)\left( {x_2^2 - 1} \right) < 0 \Leftrightarrow {\left( {{x_1}{x_2}} \right)^2} - {\left( {{x_1} + {x_2}} \right)^2} + 2{x_1}{x_2} + 1 < 0\)

\( \Leftrightarrow {\left( {m + 1} \right)^2} - 4{m^2} + 2m + 3 < 0 \Leftrightarrow - 3{m^2} + 4m + 4 < 0 \Leftrightarrow \left[ \begin{array}{l}m >2\\m < - \frac{2}{3}\end{array} \right.\left( 2 \right)\)

Kết hợp (1), (2) suy ra \(\left[ \begin{array}{l}m >2\\m < - \frac{2}{3}\end{array} \right.\)

Mà \(m \in \left( { - 2021;2021} \right) \cap \mathbb{Z}\) suy ra \(m \in \left\{ { - 2020; - 2019;...; - 1;3;...2020} \right\}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp ánC.

Mỗi tập hợp con gồm 2 phần tử của \(A\) tập hợp là một tổ hợp chập 2 của 6 phần tử. Do đó số tập hợp con gồm hai phần tử của tập hợp \(A\) là \(C_6^2.\)

Lời giải

Đáp án B.

 Cho khối chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B. Hai mặt phẳng (SAB) và (SAD) cùng vuông góc với đáy (ảnh 1)

Vì \(\left\{ \begin{array}{l}\left( {SAB} \right) \bot \left( {ABCD} \right)\\\left( {SAD} \right) \bot \left( {ABCD} \right)\\\left( {SAB} \right) \cap \left( {SAD} \right) = SA\end{array} \right. \Rightarrow SA \bot \left( {ABCD} \right)\)

Ta có: \(AB = \sqrt {B{D^2} - A{D^2}} = \sqrt {{{\left( {a\sqrt 5 } \right)}^2} - {{\left( {2a} \right)}^2}} = a\)

\(SA = AB\tan {30^0} = \frac{{a\sqrt 3 }}{3}\)

\({S_{ABCD}} = \frac{{\left( {AD + BC} \right).AB}}{2} = \frac{{\left( {2a + a} \right).a}}{2} = \frac{{3{a^2}}}{2}\)

Thể tích khối chóp \(S.ABCD\) là:

\(V = \frac{1}{3}SA.{S_{ABCD}} = \frac{1}{3}.\frac{{a\sqrt 3 }}{3}.\frac{{3{a^2}}}{2} = \frac{{{a^3}\sqrt 3 }}{6}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP