Câu hỏi:

08/05/2022 1,416

Gọi \(S\) là tập các số tự nhiên có 6 chữ số được lập từ tập hợp \(A = \left\{ {0;1;2;3;4;5;6;7;8;9} \right\}.\) Chọn ngẫu nhiên một số từ tập hợp \(S.\) Tính xác suất để chọn được số tự nhiên có tích các chữ số bằng 1400.  

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C.

Tập hợp \(S\) có \({9.10^5}\) phần tử.

Số phần tử của không gian mẫu là \(n\left( \Omega \right) = {9.10^5}.\)

Gọi \(A\) là biến cố: “Số được chọn là số tự nhiên có tích các chữ số bằng 1400”.

Ta có: \(1400 = {2^3}{.5^2}{.7^1} = {1^1}{.2^1}{.4^1}{.5^2}{.7^1} = {1^2}{.8^1}{.5^2}{.7^1}.\)

* Trường hợp 1: Số được chọn có 3 chữ số 2, 2 chữ số 5 và 1 chữ số 7 có \(C_6^3.C_3^2 = 60\) cách.

* Trường hợp 2: Số được chọn có 1 chữ số 1, 1 chữ số 2, 1 chữ số 4, 2 chữ số 5 và 1 chữ số 7 có \(C_6^2.4! = 360\) cách.

* Trường hợp 3: Số được chọn có 2 chữ số 1, 1 chữ số 8, 2 chữ số 5 và 1 chữ số 7 có \(C_6^2.C_4^2.2! = 180\) cách.

Số kết quả thuận lợi cho biến cố \(A\) là: \(n\left( A \right) = 60 + 360 + 180 = 600\) cách.

Vậy xác suất cần tìm là \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{600}}{{{{9.10}^5}}} = \frac{1}{{1500}}.\)

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tập hợp \(A = \left\{ {0;1;2;3;4;5} \right\}.\) Số tập hợp con gồm hai phần tử của tập hợp \(A\) là

Xem đáp án » 08/05/2022 43,530

Câu 2:

Cho khối chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang vuông tại \(A\) và \(B\). Hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SAD} \right)\) cùng vuông góc với đáy. Biết \(AD = 2BC = 2a\) và \(BD = a\sqrt 5 .\) Tính thể tích khối chóp \(S.ABCD\) biết rằng góc giữa \(SB\) và \(\left( {ABCD} \right)\) bằng \({30^0}\)? 

Xem đáp án » 08/05/2022 5,924

Câu 3:

Cho hình nón có chiều cao bằng 4 và bán kính đáy bằng 3. Cắt hình nón đã cho bởi mặt phẳng đi qua đỉnh và cách tâm của đáy một khoảng bằng 2, ta được thiết diện có diện tích bằng

Xem đáp án » 08/05/2022 5,288

Câu 4:

Số giao điểm của đồ thị hàm số \(y = {x^4} - 4{x^2} + 1\) với trục hoành là

Xem đáp án » 08/05/2022 4,759

Câu 5:

Gọi \(M\) và \(m\) lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = {x^3} - 3x + 2\) trên đoạn \(\left[ {0;2} \right].\) Khi đó tổng \(M + m\) bằng

Xem đáp án » 08/05/2022 3,948

Câu 6:

Cho hình chóp tứ giác đều \(S.ABCD\) có cạnh đáy bằng \(a\) tâm \(O.\) Gọi \(M,N\) lần lượt là trung điểm của \(SA\) và \(BC.\) Góc giữa đường thẳng \(MN\) và mặt phẳng \(\left( {ABCD} \right)\) bằng \({60^0}.\) Tính góc giữa đường thẳng \(MN\) và mặt phẳng \(\left( {SBD} \right)\)?

Xem đáp án » 08/05/2022 3,345

Câu 7:

Một người gửi 100 triệu đồng vào một ngân hàng với lãi suất 0,4%/tháng. Biết rằng nếu không rút tiền khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo. Hỏi sau đúng 6 tháng, người đó được lĩnh số tiền (cả vốn ban đầu và lãi) gần nhất với số tiền nàm dưới đây, nếu trong khoảng thời gian này người đó không rút tiền ra và lãi suất không thay đổi?

Xem đáp án » 08/05/2022 3,318